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ABSTRACT  

Implant failures are primarily related to bacterial infections and inflammation. Nanocoating of 

implant devices with organic molecules is a method used for improving their integration into 

host tissues and limiting inflammation. Bioengineered plant-derived rhamnogalacturonan-Is 

(RG-Is) from pectins improve tissue regeneration and exhibit anti-inflammatory properties. 

Therefore, the aim of this study is to evaluate the in vitro effect of RG-I nanocoating on 

human gingival primary fibroblast (HGF) activity and proinflammatory response following 

Porphyromonas gingivalis (P. gingivalis) infection. Infected HGFs were incubated on tissue 

culture polystyrene (TCPS) plates coated with unmodified RG-I isolated from potato pectin 

(PU) and dearabinanated RG-I (PA). HGF morphology, proliferation, metabolic activity, and 

expression of genes responsible for extracellular matrix (ECM) turnover and proinflammatory 

response were examined. Following the P. gingivalis infection, PU and PA significantly 

promoted HGF proliferation and metabolic activity. Moreover, gene expression levels of 

IL1B, IL8, TNFA, and MMP2 decreased in the infected cells cultured on PU and PA, whereas 

the expression of COL1A1, FN1, and FGFR1 was upregulated. The results indicate that RG-Is 

are promising candidates for nanocoating of an implant surface, can reduce inflammation, and 

enhance implant integration, particularly in medically compromised patients with chronic 

inflammatory diseases such as periodontitis and rheumatoid arthritis.  

Keywords: dental implants, rhamnogalacturonan-I, nanocoating, inflammation, fibroblast 
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1. INTRODUCTION 

The mechanism of progressive bone and soft connective tissue loss, as seen in rheumatoid 

arthritis (RA) and periodontal disease (PD) is associated with the host immune response.
1,2

 

The most recent studies confirm the relationship between RA and PD caused by similar risk 

factors and mechanism related to Porphyromonas gingivalis (P. gingivalis) infection. Soft and 

mineralized tissue destruction in RA and PD appears to be a result of a complex interaction 

between the P. gingivalis infection and the host immune response.
3-6

 As a consequence of 

bacterial stimuli, the host cells synthesize and secrete a great number of mediators attracting 

inflammatory cells to the infected area. This contributes to bone destruction by induction of 

osteoclast formation and release of proteolytic enzymes such as matrix metalloproteinases 

(MMPs) and apoptosis of cells.
7
 Therefore, in immunocompromised patients with an impaired 

healing capacity and greater risk of implant failure, improvement of bone tissue regeneration 

is required.   

A number of studies have shown that plant-derived polysaccharides are immunomodulatory 

agents.
8-11

 Recently, it was reported that pectin polysaccharide rhamnogalacturonan-I (RG-I) 

can prevent inflammation,
8,9

 and improve tissue regeneration.
12-16

 Our previous studies also 

showed that nanocoated RG-I pectins enhance bone tissue regeneration in vitro through 

upregulation of the gene expression of osteogenic markers in human and murine 

osteoblasts.
17-19

 Moreover, pectin polysaccharides have been reported to affect the behavior of 

fibroblasts, the most common cells of connective tissue, which play a critical role in the soft 

and bone tissue healing process.
20

 RG-I is able to induce adhesion, proliferation and survival 

of fibroblasts and may stimulate soft and hard tissue regeneration as a result.
16

 Its ability to 

modulate the host’s inflammatory response as well as stimulate tissue repair makes RG-I a 
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promising candidate for biomaterial applications in tissue engineering and dental 

implantation, particularly in RA and PD.   

The success of implant therapy depends on the outcome of the bone healing processes 

following implant placement.
20,21

 According to the concept of the wound healing process, 

bone healing is divided into four phases: hemostasis, inflammation, proliferation, and 

remodeling (Figure 1).
22

 Fibroblasts are a key cellular player in this process and act at the 

early stage of bone healing after implantation. Fibroblasts activated by growth factors migrate 

from the surrounding healthy tissue toward the implant surface, and after cellular attachment, 

they begin to synthesize new collagen, elastin, and fibronectin, inducing the formation of 

granulation tissue and angiogenesis.
20-22

 However, as a consequence of bacterial invasion, the 

peri-implant bone healing process is disturbed. During infection, bacterial virulence factors 

stimulate immune and periodontal tissue-derived cells to release a very large number of 

proinflammatory cytokines, resulting in reduced bone formation.
23

   

Here, we hypothesize that RG-I pectin polysaccharides coated on implants in nanoscale may 

modulate the behavior of human gingival fibroblasts (HGFs) and their response to P. 

gingivalis infection at an early stage of peri-implant bone healing. The impact of 

bioengineered RG-Is is considered to limit inflammation and improve the integration of dental 

implants, particularly in patients with a compromised healing capacity such as that observed 

in PD and RA. Further, the structure of RG-I pectins can be enzymatically modified, which 

results in different physicochemical properties, such as total charge, side chain branching, and 

molecular weight. The possibility of controlling the structure with a set of specific enzymes 

widens the applicability of RG-I as a biomaterial coating.
13,15

 Therefore, the aim of our study 

was to evaluate the effect of potato dearabinanated RG-I (PA) and potato unmodified RG-I 
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(PU) on in vitro HGFs’ behavior and modulation of proinflammatory response stimulated by 

P. gingivalis infection.  

2. MATERIALS AND METHODS 

2.1 Isolation, modification and nanocoating of RG-I  

RG-I was isolated and prepared by the enzymatic treatment of potato pulp (P) as previously 

published.
18,19

 Two different pectin RG-Is, PA and PU, were used in this study. The chemical 

properties, monosaccharide composition, and linkage analysis of PU and PA have been 

presented in our previous works.
18,19

 In this study, PU and PA RG-Is (128 µg/mL) were 

adhered to the surface of 6-well, 24-well, and 96-well tissue culture polystyrene (TCPS) 

plates (Techno Plastic Product) as described earlier.
14

 

2.2 In vitro studies 

2.2.1 Cell culture 

Fibroblast primary cells were isolated from human gingival leftovers after surgery (ethical 

number: EA1/081/14) as described
24

 and cultured in a DMEM medium (Gibco) supplemented 

with 10% fetal bovine serum (FBS) (Biochrom), 1% non-essential amino acids (Biochrom), 

1% antibiotic (streptomycin and penicillin) (Biochrom), 1% amphotericin (Biochrom), and 

1% L-Glutamine (Biochrom). The cells were incubated at 37°C with 5% CO2 (Heraeus). The 

cell morphology was monitored and documented before and after infection with P. gingivalis 

by light microscopy (Leitz). 

2.2.2 Porphyromonas gingivalis cultivation 

The P. gingivalis strain ATCC 33277 (Manassas) was used in this study. P. gingivalis bacteria 

examined by the commercial biochemical test kit ID 32A (API BioMérieux) were grown at 
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37°C under anaerobic conditions on Columbia agar (Sifin Diagnostics GmbH) supplemented 

with 5% sheep blood (Acila Sarl), 0.1% vitamin K (Sigma-Aldrich), and 0.25% hemin (Fisher 

Scientific GmbH) for 3–5 days. 

2.2.3 Porphyromonas gingivalis infection assay 

For the infection assay, the P. gingivalis strain was firstly resuspended in the DMEM medium 

containing no antibiotics. The number of bacteria was determined by measuring the optical 

density (OD) using a UV-visible spectrophotometer (Shimadzu Co.) at a wavelength of 520 

nm, based on a standard curve established by the colony formation on bacterial plates. The 

confluent HGF monolayers were infected with P. gingivalis at a multiplicity of infection of 

100 and incubated for 2 hours (at 37°C in 5% CO2). After co-incubation of the HGFs with the 

bacteria, the supernatant was replaced with a fresh medium containing 0.5 mg/mL of 

gentamicin (Biochrom) and 0.1 mg/mL of metronidazole (Sigma-Aldrich) for 1 hour to 

remove the extracellular bacteria. After 1 hour the HGF cultures were washed twice with 

sterile phosphate buffered saline (PBS). Finally, the fresh DMEM medium supplemented with 

fetal bovine serum and antibiotics was applied to each well. The infected HGFs were 

incubated at standard conditions (at 37°C in 5% CO2) for the in vitro experiments. 

2.2.4 Proliferation  

Cell proliferation was assessed using bromodeoxyuridine (BrdU) on the 96-well plate with 1 

× 10
5
 cells/mL seeded and measured at 12, 24, 48, and 72 hours after infection. The 

proliferation was performed using commercially available BrdU kit (Roche Diagnostics 

GmbH). The cells were processed according to the recommendations in the manufacture’s 

protocol. 

2.2.5 Cell metabolic activity  
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Cell metabolic activity was analyzed on the 24-well plate with 2 × 10
4
 cells/mL seeded and 

measured at 3, 24, and 72 hours after infection by a tetrazolium salt (WST-1) colorimetric 

assay (Roche Diagnostics GmbH). Briefly, the culture medium was removed, and the 

experimental medium containing a 10% (100 µL) WST-1 reagent was applied (250 µL/well). 

The plates were incubated at 37°C with 5% CO2 for 1 hour, and 100 µL/well was transferred 

to a 96-well plate (Nunc). The plate was shaken before the absorbance measurement at 450 

nm and 650 nm (baseline correction) by a Microplate Reader 500. Wells containing the WST-

1 medium without cells were used as the background and were subtracted from all the 

measurements.  

2.2.6 Reverse transcription and real-time polymerase chain reaction  

The RNA isolations were conducted after 3, 7, 14, and 21 days using an RNeasy mini kit 

(Qiagen) as previously described.
18

 Isolated RNA was reverse transcribed using a one-step 

high-capacity cDNA reverse transcription (RT) kit (Applied Biosystem). The level of gene 

expression was calculated using the comparative Ct method (∆∆Ct). Results of the beta actin 

(ACTB) expression were used as the Ct reference for each of the samples, and results of the 

investigated genes obtained for 3-day HGFs were used as the ∆Ct calibrator sample. 

LightCycler 480 SYBR Green I Master (Roche Diagnostics GmbH) and specific 

oligonucleotide primers (Sigma-Aldrich) were used for examining the expression of target 

genes: collagen type 1 (COL1A1), fibronectin 1 (FN1), matrix metalloproteinase 2 (MMP2), 

fibroblast growth factor receptor 1 (FGFR1), tumor necrosis factor-alpha (TNFA), interleukin-

1 beta (IL1B), interleukin-8 (IL8), and beta actin (ACTB) as the endogenous control gene. 

Manually prepared cDNA of 2-µL and 8-µL reaction mixes were pipetted to each well of the 

96-well plate (Roche Diagnostics GmbH), according to the manufacturer’s instructions. The 

polymerase chain reaction (PCR) conditions were 95°C for 5 min, followed by 40 cycles of 

10 s at 95°C, 15 s at 62.3°C, 20 s at 72°C, and a final cycle of 20 min with increasing 
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temperature from 60°C to 95°C, followed by the standard denaturation curve. The analyzes 

were performed with the CFX96 Real-Time PCR Detection System (Bio-Rad). 

2.2.7 Statistical analyzes  

Descriptive statistics were used, and mean values were calculated. Data are shown as mean ± 

standard error of the mean (SEM) and were analyzed using one-way analysis of variance 

(ANOVA) and post hoc Bonferroni test (IBM SPSS Statistic 22). As the significance level, a 

p-value (probability value) of 5% was used throughout the study. 

3. RESULTS 

3.1 PU and PA coatings do not influence the infected HGF morphology  

First, we analyzed the impact of the RG-I nanocoating on the P. gingivalis-infected HGFs in 

terms of morphological differences. As shown in Figure 2, neither the nanocoating with PU 

nor that with PA influenced the morphology of the infected HGFs as compared to the 

corresponding TCPS control. No differences in cells shape, size, and spreading were found 

between the HGFs grown on the different surfaces (PU, PA, and TCPS).  

3.2 PU and PA coatings enhance the infected HGF proliferation and metabolic activity  

To determine the influence of the RG-I nanocoating on the fibroblast proliferation after the P. 

gingivalis infection, we analyzed the BrdU incorporation rate of these cells on the different 

coatings (PU, PA, and TCPS as the control) by using ELISA. The proliferation rate of the 

infected HGFs increased over time irrespective of the different culture surfaces/coatings used 

(Figure 3). But, the proliferation rate was significantly higher in the infected HGFs cultured 

on the PU- and PA-coated than that of the cells grown on TCPS as observed at each period 

being analyzed (12, 24, 48, and 72 hours). Moreover, the cellular metabolic activity increased 

over time in HGFs after the P. gingivalis infection (Figure 4). Compared with the infected 
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HGFs seeded on TCPS, significantly higher cellular metabolic activity was detected in cells 

grown either on the PU-coated surfaces at 3 hours or on the PA-coated surfaces at 3 hours and 

24 hours post infection.  

3.3 PU and PA coatings considerably influence the infected HGF gene expression 

To investigate the influence of the RG-I nanocoating on the proinflammatory response of P. 

gingivalis-infected HGFs, we first analyzed the gene expression of IL1B, IL8, TNFA, and 

MMP2 (Figure 5). In general, the IL1B, IL8, TNFA, and MMP2 expression decreased over the 

time from 3 to 21 days and was the lowest in the infected HGFs cultured on the PA-coated 

surface and the highest in cells on the control TCPS surface.  

Second, we analyzed the expression of genes coding the proteins important for the HGF 

function such as the extracellular matrix (ECM) proteins COL1A1 and FN1 as well as the 

fibroblast survival and growth-related receptor FGFR1. 

In contrast to the proinflammatory gene expression analyzed, the COL1A1, FN1, and FGFR1 

expression increased over time. The HGFs grown on TCPS decrease the expression of FN1 on 

day 21. But, the COL1A1, FN1 and FGFR1 expression at different endpoints (3, 7, 14, and 21 

days) was the highest in the infected HGFs grown on the PA-coated surface and the lowest in 

the cells cultivated on the TCPS control (Figure 5). The statistically significant differences in 

the IL1B, IL8, TNFA, MMP2, COL1A1, FN1, and FGFR1 gene expression between the TCPS 

control and PU and, PA were found at different endpoints (3, 7, 14, and 21 days), as 

illustrated in Figure 5.  

4. DISCUSSION 

Periodontal pathogens, such as P. gingivalis, colonize and invade the host tissue, causing 

inflammation and periodontal tissue destruction. Most studies investigating periodontal and 
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peri-implant diseases indicate a loss of soft connective tissue and bone integrity as a result of 

the host inflammatory response to the bacterial infection.
1,25,26

 Pectin polysaccharides, 

including RG-I, have been shown to have immunomodulatory properties, which may reduce 

the risk of peri-implantitis.
8,9

  

The aim of our study was to investigate the capability of modified (PA) and unmodified (PU) 

RG-Is to modulate function and the proinflammatory response of HGFs induced by P. 

gingivalis. Our data showed for the first time that pectin RG-Is influence the proinflammatory 

cytokine response and promote the proliferation and metabolic activity of HGFs as well as the 

expression of selected genes required for extracellular matrix (ECM) turnover following P. 

gingivalis infection. In response to the bacterial infection, cell morphology remained 

unaffected in terms of the spreading and the shape of the infected HGFs by the different 

surfaces analyzed (Figure 2).   

The virulence factors of P. gingivalis have an inhibitory effect on HGF proliferation,
27

 which 

is particularly noticeable in chronic inflamed tissues observed in medically compromised 

patients with inflammatory diseases such as rheumatoid arthritis and periodontitis.
28

 

According to our results, RG-Is, particularly PA, significantly inhibited the decrease in HGF 

proliferation and metabolic activity induced by the bacteria P. gingivalis as compared to that 

on the control surface without pectins (Figures 3 and 4). These findings are supported by 

results obtained with murine macrophage cell line J774.2 cultured on modified hairy region-α 

(MHR-α) from apple pectin in the presence of the bacterial virulence factor 

lipopolysaccharide (LPS). The MHR-α nanocoating prevents the decrease in the proliferation 

and cell viability of LPS-activated macrophages.
9
 A number of studies investigating the 

destructive mechanisms of periodontal pathogens have shown that immune response is 

directly responsible for connective tissue breakdown and bone loss.
1,2,25,26

 Immune response 
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cells as well as periodontal tissue-derived cells stimulated by bacteria release 

proinflammatory cytokines such as IL-1β, IL-8, and TNF-α. The proinflammatory cytokines 

stimulate fibroblasts, macrophages, and epithelial cells to synthetize proteolytic enzymes, 

leading to ECM degradation.
26

 We examined the proinflammatory gene expression at the 

RNA level to evaluate the in vitro response of HGFs to bacterial stimuli with and without the 

pectin nanocoating. The levels of the proinflammatory gene expression of IL1B, IL8, and 

TNFA were significantly lower in cells grown on PA than on the TCPS control at different 

time points, while those grown on PU did not show significant differences (Figure 5). Our 

findings indicate that the sugar composition and structure of RG-Is are responsible for the 

proinflammatory cytokine response of HGFs following the P. gingivalis infection. 

Enzymatically modified RG-I pectin with a lower content of arabinose and a higher amount of 

galactose seemed to have the ability to modulate the inflammation. In accordance with these 

results, a number of other studies demonstrated that pectin polysaccharides are 

immunomodulatory agents.
8-11

 Our results also demonstrate that the content of arabinose and 

galactose in RG-Is influences the inflammatory response of the infected HGFs. It has been 

recently reported that modified citrus pectin (MCP) attenuates the inflammatory response in 

human synovial fibroblasts (SF) obtained from rheumatoid arthritis and osteoarthritis patients 

through a reduction of the cytokine IL6 levels. MCP binds to the galectin-3 receptor, an 

important player in the initiation of the inflammatory response, and inhibits the inflammatory 

response of SF.
29

 This finding is in line with our results, and therefore, it can be speculated 

that the anti-inflammatory effect of RG-I pectin is mediated through the galectin-3 receptor. 

Experimental evidence indicates that the region of RG-I with a higher galactose content binds 

specifically and inhibits the function of galectin-3 found on the cell surface.
30

 But, the 

molecular mechanism of the interaction between the RG-I structure and the cellular galectin-3 

receptors under bacterial infection is still poorly defined and needs further investigation.  

Page 11 of 23

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



Pectin nanocoating reduces proinflammatory response of fibroblasts 

 

 

12 

 

The primary function of fibroblasts such as HGFs is to maintain the ECM turnover by the 

deposition of ECM components and the secretion of ECM-degrading MMPs. The balance 

between the deposition and the degradation of ECM is essential for the structural integrity of 

the tissue. The inflammation process interferes with the bone homeostasis, induces higher 

MMP secretion, and leads to an excessive degradation of ECM.
31,32

 Previous studies intend to 

use the ECM proteins as implant coatings to improve the bone healing, but they can denature 

and thereby lose the ability to bind cells. Additionally, the proteins can be subjected to the 

enzymatic degradation, particularly those stemming from the mammalian origin that has 

classically been used due to their involvement in the bone formation (i.e. collagen). The plant-

derived polysaccharides, mainly represented by the RG-Is have the advantage of being 

relatively inexpensive and easy to obtain than the commonly used proteins. Furthermore, the 

RG-I molecules are not enzymatically degraded in the body and their structure is relatively 

easy to control.
12,13,33

 Our results showed that the RG-I properties may have a great effect not 

only on osteoblasts,
14,17,18

 but also on fibroblasts during the bone healing process due to 

increasing expression levels of COL1A1 and FN1 (Figure 5). These findings are of great 

importance since collagen and fibronectin are the main components of ECM.
31

   

Recent clinical investigation has demonstrated the important role of the FGF/FGFR signaling 

in the promotion of bone regeneration. FGFR1 is known as a major factor affecting cell 

proliferation and differentiation.
34

 Thus, the enhanced FGFR1 expression in the presence of 

RG-I could contribute to greater bone regeneration following the P. gingivalis infection. The 

present study also demonstrated the ability of RG-Is, particularly PA, to suppress the MMP2 

expression in the presence of P. gingivalis. A lower MMP2 expression may lead to the 

inhibition of the excessive degradation of ECM following the P. gingivalis infection (Figure 

5). To summarize, the RG-I coating on surfaces does not only seem to decrease the 

proinflammatory response of HGFs through a downregulation of IL1B, IL8, and TNFA, but 
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might also induce ECM formation through the upregulation of COL1A1, FN1, and FGFR1, 

and the suppression of MMP2. These studies may have a large implication for clinical use as 

nanocoating of implant surface, but also modification of bone substitute materials to stimulate 

bone growth and modulate inflammatory response. However, due to sparse data concerning 

pectin nanocoatings more in vitro as well as in vivo studies need to be performed to provide 

valuable data of the RG-I utility in surface modification of dental implants. 

5. CONCLUSION 

Nanocoatings with plant-derived RG-Is affect HGF proliferation and metabolic activity 

following P. gingivalis infection. Further, pectin RG-I, particularly with a high content of 

galactose and a low amount of arabinose, has the capacity to reduce the inflammatory 

response of the infected HGFs and stimulate the ECM formation through a downregulation of 

IL1B, IL8, TNFA, and MMP2 and an upregulation of the COL1A1, FN1, FGFR1 gene 

expression. 

Our findings are of great importance for biomaterial applications and therapeutic approaches. 

The present study indicates the potential role of RG-Is in limiting inflammation and 

promoting implant integration in immunocompromised patients with chronic inflammatory 

diseases such as rheumatoid arthritis and periodontitis. 
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Schematic illustration of normal and abnormal bone healing process in terms of the bacterial colonization 
and invasion. ECM: extracellular matrix; FGFs: fibroblast growth factors; ILs: interleukins; MMPs: matrix 

metalloproteinases; TGF-β: transforming growth factor-beta; TNF-α: tumor necrosis factor-alpha.  
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Representative images of the infected HGF morphology (a) on control TCPS surface, (b) on TCPS surface 
coated with PU, (c) on TCPS surface coated with PA investigated at 24 hours post infection by light 

microscopy. The bar is a scale of 10 µm. HGF: human primary gingival fibroblast; TCPS: tissue culture 
polystyrene; PU: potato unmodified rhamnogalacturonan-I; PA: potato dearabinanated 

rhamnogalacturonan-I.  
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Proliferation of the infected HGFs cultured on TCPS surface without coating (C), on TCPS coated with PU, 
and on TCPS coated with PA as assessed by BrdU incorporation after 6, 12, 24, 48, and 72 hours using 

colorimetric assay. Data are given as means +/- SEM (n = 6) and were statistically analyzed using one-way 
ANOVA with Bonferroni corrections for multiple comparisons. (p-values: * p < 0.05; ** p < 0.01; *** p < 
0.001). HGFs: human primary gingival fibroblasts; TCPS: tissue culture polystyrene; PU: potato unmodified 
rhamnogalacturonan-I; PA: potato dearabinanated rhamnogalacturonan-I; BrdU: bromodeoxyuridine; SEM: 

standard error of the mean; ANOVA: analysis of variance.  
 

81x65mm (600 x 600 DPI)  

 

 

Page 21 of 23

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



  

 

 

Cell metabolic activity of the infected HGFs cultured on TCPS surface without coating (C), on TCPS coated 
with PU, and on TCPS coated with PA measured by the cleavage of a WST-1 after 1, 3, and 7 days. Data are 
given as means +/- SEM (n = 6) and were statistically analyzed using one-way ANOVA with Bonferroni 

corrections for multiple comparisons. (p-values: * p < 0.05; ** p < 0.01; *** p < 0.001). HGFs: human 
primary gingival fibroblasts; TCPS: tissue culture polystyrene; PU: potato unmodified rhamnogalacturonan-
I; PA: potato dearabinanated rhamnogalacturonan-I; WST-1: tetrazolium salt; SEM: standard error of the 

mean; ANOVA: analysis of variance.  
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Gene expression of the infected HGFs cultured on TCPS surface without coating (C), on TCPS coated with 
PU, and on TCPS coated with PA as assessed by real-time PCR measurements of the expression of IL1B, IL8, 
TNFA, MMP2, COL1A1, FN1, and FGFR1 after 3, 7, 14, and 21 days. Data are given as means +/- SEM (n = 

6) and were statistically analyzed using one-way ANOVA with Bonferroni corrections for multiple 
comparisons. (p-values: * p < 0.05; ** p < 0.01; *** p < 0.001). HGFs: human primary gingival 

fibroblasts; TCPS: tissue culture polystyrene; PU: potato unmodified rhamnogalacturonan-I; PA: potato 
dearabinanated rhamnogalacturonan-I; PCR: polymerase chain reaction; SEM: standard error of the mean; 

ANOVA: analysis of variance.  
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