487 research outputs found

    Spectral Perturbation and Reconstructability of Complex Networks

    Full text link
    In recent years, many network perturbation techniques, such as topological perturbations and service perturbations, were employed to study and improve the robustness of complex networks. However, there is no general way to evaluate the network robustness. In this paper, we propose a new global measure for a network, the reconstructability coefficient {\theta}, defined as the maximum number of eigenvalues that can be removed, subject to the condition that the adjacency matrix can be reconstructed exactly. Our main finding is that a linear scaling law, E[{\theta}]=aN, seems universal, in that it holds for all networks that we have studied.Comment: 9 pages, 10 figure

    Optimal robust inventory management with volume flexibility: matching capacity and demand with the lookahead peak-shaving policy

    Get PDF
    We study inventory control with volume flexibility: A firm can replenish using period-dependent base capacity at regular sourcing costs and access additional supply at a premium. The optimal replenishment policy is characterized by two period-dependent base-stock levels but determining their values is not trivial, especially for nonstationary and correlated demand. We propose the Lookahead Peak-Shaving policy that anticipates and peak shaves orders from future peak-demand periods to the current period, thereby matching capacity and demand. Peak shaving anticipates future order peaks and partially shifts them forward. This contrasts with conventional smoothing, which recovers the inventory deficit resulting from demand peaks by increasing later orders. Our contribution is threefold. First, we use a novel iterative approach to prove the robust optimality of the Lookahead Peak-Shaving policy. Second, we provide explicit expressions of the period-dependent base-stock levels and analyze the amount of peak shaving. Finally, we demonstrate how our policy outperforms other heuristics in stochastic systems. Most cost savings occur when demand is nonstationary and negatively correlated, and base capacities fluctuate around the mean demand. Our insights apply to several practical settings, including production systems with overtime, sourcing from multiple capacitated suppliers, or transportation planning with a spot market. Applying our model to data from a manufacturer reduces inventory and sourcing costs by 6.7%, compared to the manufacturer's policy without peak shaving.info:eu-repo/semantics/publishedVersio

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve

    Get PDF
    AIMS: Our aim was to validate patient-specific software integrating baseline anatomy and biomechanical properties of both the aortic root and valve for the prediction of valve morphology and aortic leaflet calcium displacement after TAVI. METHODS AND RESULTS: Finite element computer modelling was performed in 39 patients treated with a Medtronic CoreValve System (MCS; n=33) or an Edwards SAPIEN XT (ESV; n=6). Quantitative axial frame morphology at inflow (MCS, ESV) and nadir, coaptation and commissures (MCS) was compared between multislice computed tomography (MSCT) post TAVI and a computer model as well as displacement of the aortic leaflet calcifications, quantified by the distance between the coronary ostium and the closest calcium nodule. Bland-Altman analysis revealed a strong correlation between the observed (MSCT) and predicted frame dimensions, although small differences were detected for, e.g., Dmin at the inflow (mean±SD MSCT vs. MODEL: 21.6±2.4 mm vs. 22.0±2.4 mm; difference±SD: -0.4±1.3 mm, p<0.05) and Dmax (25.6±2.7 mm vs. 26.2±2.7 mm; difference±SD: -0.6±1.0 mm, p<0.01). The observed and predicted calcium displacements were highly correlated for the left and right coronary ostia (R2=0.67 and R2=0.71, respectively p<0.001). CONCLUSIONS: Dedicated software allows accurate prediction of frame morphology and calcium displacement after valve implantation, which may help to improve outcome
    • …
    corecore