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Abstract
We study inventory control with volume flexibility: A firm can replenish using period-
dependent base capacity at regular sourcing costs and access additional supply at a
premium. The optimal replenishment policy is characterized by two period-dependent
base-stock levels but determining their values is not trivial, especially for nonsta-
tionary and correlated demand. We propose the Lookahead Peak-Shaving policy that
anticipates and peak shaves orders from future peak-demand periods to the current
period, thereby matching capacity and demand. Peak shaving anticipates future order
peaks and partially shifts them forward. This contrasts with conventional smooth-
ing, which recovers the inventory deficit resulting from demand peaks by increasing
later orders. Our contribution is threefold. First, we use a novel iterative approach to
prove the robust optimality of the Lookahead Peak-Shaving policy. Second, we provide
explicit expressions of the period-dependent base-stock levels and analyze the amount
of peak shaving. Finally, we demonstrate how our policy outperforms other heuristics
in stochastic systems. Most cost savings occur when demand is nonstationary and neg-
atively correlated, and base capacities fluctuate around the mean demand. Our insights
apply to several practical settings, including production systems with overtime, sourc-
ing from multiple capacitated suppliers, or transportation planning with a spot market.
Applying our model to data from a manufacturer reduces inventory and sourcing costs
by 6.7%, compared to the manufacturer’s policy without peak shaving.
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1 INTRODUCTION

Today’s logistics environment is characterized by an ongoing
shortage of truck drivers (Bhattacharjee et al., 2021), dis-
rupted supply chains in the wake of the pandemic (Berger,
2021), and rising oil prices (Krauss, 2022). Shipping rates
for 2022 surged by 20%–100% compared to the year before
(Tyagi et al., 2021), forcing manufacturers to make better use
of their “base capacity”.
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We worked with a manufacturer in the fast-moving con-
sumer goods industry whose daily replenishments from its
factory to distribution centers are characterized by volume
flexibility: a third-party carrier offers guaranteed shipment
capacity at a pre-negotiated contract rate, but above this base
capacity, the manufacturer must resort to the transportation
spot market. Under the current conditions, the rate premium
can easily double the base rate.

The option to source above the current base capacity
by paying a premium, referred to as “volume flexibility,”
introduces the following trade-offs. When inventories in the
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(a) Piece-wise linear sourcing costs. (b) Optimal policy.

F I G U R E 1 The left panel visualizes our modeling of volume flexibility using a piece-wise linear sourcing cost in which the first kt units incur the
pre-negotiated unit cost c while units beyond kt incur an additional premium cp. The right panel shows the optimal policy: The order quantity can (I) exceed,
(II) equal or (III) be below the base capacity kt . [Color figure can be viewed at wileyonlinelibrary.com]

warehouses are low, the manufacturer must decide whether
using the more expensive, premium supply is beneficial or
whether replenishment can be postponed to later low-demand
periods and supplied at regular rates. Vice versa, when the
manufacturer faces forecasts with demand peaks, volume
flexibility allows anticipatory ordering at base cost. This
lookahead peak shaving has the benefit of avoiding the pre-
mium that must be traded off against the resulting increased
inventory-related costs.

Our problem can be modeled as a single-sourcing inven-
tory system with backlogging. Order quantities are con-
strained by a weak capacity limit with the flexibility to source
above the base capacity at a premium (see Figure 1a). Porteus
(1990) shows that under the resulting piece-wise linear cost
structure, a generalized base-stock policy, characterized by
an additional base-stock level per price segment, minimizes
the expected sourcing and inventory costs per period. Under
two price segments, the generalized base-stock policy first
places a base order to raise the inventory position to the high
base-stock level. If that quantity exceeds the base capacity, at
most the base capacity is ordered (see Figure 1b, green area).
After this base order, if the adjusted inventory position is still
below the low base-stock level, additional units are ordered
at the premium cost to raise the inventory position to the low
base-stock level (see Figure 1b, blue area).

Unfortunately, there are currently no closed-form expres-
sions for the optimal base-stock levels in a stochastic setting
that aims to minimize expected costs. One must resort to
numerical approaches such as dynamic programming (Lu
& Song, 2014; Martínez-de Albéniz & Simchi-Levi, 2005).
The latter requires discretization of the demand distribution
and quickly becomes computationally expensive, especially
when demand is nonstationary or correlated. Multivariate

comparative statics are needed to understand the interac-
tion among parameters, which is cumbersome for numerical
approaches. The nonexistence of closed-form solutions also
hampers implementation in practice. As such, we have seen
our manufacturer resorting to simplifying, suboptimal heuris-
tics to set base-stock levels. This may substantially increase
costs, as we also observe in our numerical experiments. We
believe this practice may also exist at other companies facing
the same problem. They may benefit from simple formulae
for the optimal policy. This paper proposes such formulae by
utilizing robust optimization.

We show the robust optimality of the Lookahead Peak-
Shaving policy that anticipates or peak shaves orders from
future peak-demand periods to the current period, thereby
matching capacity and demand. The Lookahead Peak-
Shaving policy, visualized in Figure 2, is intuitive and works
as follows: (a) compute future order quantities assuming an
uncapacitated system; (b) working backward from the most
future period in the planning horizon, recursively allocate all
units that exceed the base capacity in future periods to the
closest preceding periods with spare base capacity, except
for the current period to quantify the shifting need. This is
the total aggregate remaining units above the base capac-
ity in future periods within the planning horizon. It is the
amount we would want to shift to the current period if ample
capacity were available in the current period; and finally (c)
peak shave the remaining units above capacity to the cur-
rent period until either all units are shifted or the current
period’s spare capacity is fully used. We refer to the actual
amount of units that can be shifted to the current period as the
peak-shaved quantity. Peak shaving differs from conventional
smoothing in that it anticipates future order peaks and par-
tially shifts them forward. Conventional smoothing recovers
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F I G U R E 2 The Lookahead Peak-Shaving policy: (a) computes order quantities assuming no capacities; (b) determines the shifting need, that is, the
desired amount of units to shift to the current period; and (c) peak shaves orders from future capacitated periods to the current period, hereby reducing future
premium costs at the expense of increasing the inventory mismatch costs. [Color figure can be viewed at wileyonlinelibrary.com]

the inventory deficit from demand peaks by increasing later
orders.

The deterministic nature of robust optimization allows cap-
turing the base-stock levels in a closed form based on the
worst-case demand realizations. The explicit expression of
the peak-shaved quantity yields insight into how and when
peak shaving results in filling up the base capacity, thereby
reducing future premium costs at the expense of increased
inventory mismatch costs. The applicability and effective-
ness of our policy are supported by comprehensive numerical
analyses and its application using data from our manufac-
turer. We compare our robustly optimal approach against two
heuristic replenishment policies, of which the manufacturer
currently adopts one. The numerical experiment shows that
our policy performs well, especially when demand is nonsta-
tionary, negatively correlated, and when capacity fluctuates.
This performance improvement is not only in terms of worst-
case but also in terms of the conventional “expected cost”
criterion. We also demonstrate how the manufacturer may
use his forecast and related forecast errors to compute the
worst-case realizations needed to determine the base-stock
levels. The application of our Lookahead Peak-shaving pol-
icy on 869 products of the manufacturer results in 6.7% cost
savings.

In sum, our contribution is threefold: (1) We prove the
robust optimality of the Lookahead Peak-Shaving policy with
a novel proof technique based on the Simplex algorithm;
(2) our robustly optimal policy also yields excellent perfor-
mance in terms of expected cost, especially when demand
is nonstationary and negatively correlated, and when capac-
ities fluctuate around the mean demand; (3) our explicit
expressions are intuitive, easy to apply in practice and allow
multivariate “what-if” analyses, yielding insights into how
peak shaving pro-actively matches capacity and demand. Our
model easily extends to other settings where flexible supply
is prevalent such as companies with a dedicated workforce

but the option to pay for overtime or part-time labor or con-
tracts may be used to source from a preferred supplier up to a
predefined level, but with the option to resort to back-up
suppliers at a higher cost.

2 RELATED LITERATURE

We contribute to the stochastic inventory control literature
by building on methods and techniques from the field of
robust optimization. When sourcing costs are linear in the
ordered volume, inventory mismatch costs are convex and
unmet demand may be backlogged, Karlin and Scarf (1958a)
prove that a base-stock policy minimizes expected costs. Kar-
lin (1958) extends the linear sourcing cost assumption to
any convex function and shows that the latter makes the
optimal base-stock level dependent on the inventory levels
before order placement. Low inventory levels induce lower
base-stock levels: it is better to partially postpone orders and
incur an additional inventory mismatch than ordering now at
a higher unit sourcing cost. Porteus (1990, p. 662) refers to
this policy as a generalized base-stock policy. Porteus (1990)
shows that there are a finite number of base-stock levels if the
sourcing cost is piece-wise linear and convex. In particular,
when the sourcing cost has two linear segments, the optimal
policy is defined by two base-stocks that determine when the
capacity is deceeded, exactly used, or exceeded (as visualized
in Figure 1b). We will show that the robustly optimal policy
exhibits the same policy structure.

While the optimal policy structure is known in a conven-
tional stochastic setting, the optimal base-stock levels are not.
Lu and Song (2014) use dynamic programming to obtain
the optimal order quantities. This computational approach,
however, does not scale extremely well although Martínez-de
Albéniz and Simchi-Levi (2005) demonstrate how to reduce
the computational effort by limiting the search space. Yet,
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both articles assume perfect knowledge about the demand
distribution, an assumption we will relax. Henig et al. (1997)
investigate a similar model in which a contracted capacity of
k units is purchased in advance, such that the first k units
can be sourced at no cost. The piece-wise linear sourcing
cost function is identical to our system. They numerically
obtain the optimal base-stock levels by enumerating over all
base-stock level combinations, using the underlying Markov
chain. Gijsbrechts et al. (2022) investigate a dual sourcing
model in which the fast source has a piece-wise linear sourc-
ing cost function. They find explicit expressions for the fast
base-stock levels when a second slow source with linear
sourcing costs is available. Yet, their results do not hold for
single sourcing.

We employ robust optimization and refer to Ben-Tal et al.
(2009) for a good introduction. Robust optimization provides
an alternative to stochastic optimization by minimizing the
worst-case cost, that is, the maximum possible cost, rather
than minimizing the expected cost. Min–max approaches
have been used since the early days of inventory con-
trol. Karlin and Scarf (1958b), for instance, minimizes the
expected cost for all demand distributions with the same
mean and standard deviation. Within linear programming,
Soyster (1973) introduces interval uncertainty implying the
uncertain parameters (in our study the demand distribution)
are constrained to lie within a specific interval around their
nominal (i.e., expected) values while the worst case scenario
is minimized. A weakness of using interval uncertainty is
that, by definition, we always buffer against the most extreme
cases. For instance, while demand may deviate significantly
within periods, it is often unlikely that the worst-case demand
appears every period.

The demand data of the companies we have worked with
all contain signification fluctuations on a daily basis. Yet,
the monthly cumulative demand is prone to less variabil-
ity. This conservative nature of interval uncertainty hampered
widespread adoption of robust optimization in inventory con-
trol, both in theory and in practice. That is, until Bertsimas
and Sim (2004) pioneered the use of “budgets of uncertainty”
to reduce the level of conservatism. In addition to uncer-
tainty intervals around the uncertain variables, they restrict
the cumulative deviation from the nominal values of all
uncertain variables to be within a budget. Their approach
is intuitive: the uncertainty may be large in specific peri-
ods but the cumulative deviation typically reduces as the
planning horizon increases. For instance, we may have poor
daily forecasts on consumer demand but the monthly rela-
tive forecast error is typically smaller—as we also observe
in our data set. This opened the door toward many follow-up
papers within inventory control. Bertsimas and Thiele (2006)
demonstrate how to apply the method of Bertsimas and Sim
(2004) on several classic inventory problems, such as sin-
gle sourcing with, and without, a fixed set-up cost, systems
with hard capacity constraints on the orders and inventory
levels, and networked multi-echelon systems. Interestingly,
they show that the optimal robust structure is often identi-
cal to its stochastic counterpart. These results are powerful as

they demonstrate that robust formulations may perform well
in stochastic settings when the uncertainty sets are chosen
well. In other words, when the policy structure is alike, the
robust policy parameters may be tuned in such a way that
the resulting robust policy and its parameters match the opti-
mal stochastic policy parameters. As such, without requiring
the exact demand distribution, the robust policy is capable
of achieving the same cost performance as the stochasti-
cally optimal policy when evaluated on the expected cost
performance measure. This is an appealing feature when the
knowledge on the stochastic distribution is sparse. We build
further on the aforementioned works by tackling an inventory
system in which the sourcing costs are piece-wise linear and
convex while leveraging a specific parameterization of the
worst-case uncertainty realizations set to derive closed-form
expressions of the policy parameters. Moreover, we demon-
strate the resulting cost savings when we apply our model to
a real data set.

Determining the budgets of uncertainty forms an impor-
tant aspect of robust optimization. In other words: “How do
we trade-off expected cost performance in a stochastic setting
versus conservatism?” A fundamental method was coined by
Bandi and Bertsimas (2012), proposing the use of the central
limit theorem (CLT) to constrain the periodic and cumula-
tive uncertainty by the period means and standard deviations.
Mamani et al. (2017) use the same CLT approach to define
their uncertainty sets with respect to the period means and
standard deviations. In doing so, they provide closed-form
expressions of the robustly optimal policy parameters in clas-
sic single sourcing inventory management settings with linear
transportation costs that only rely on the first two moments
of the demand distribution. We employ the same uncertainty
sets as Mamani et al. (2017) but apply them to the system
with piece-wise linear sourcing costs. For a detailed overview
of robust optimization including piecewise linear functions,
we refer to Gorissen and Den Hertog (2013) and Ardestani-
Jaafari and Delage (2016). Our problem is part of their class
of problems. While Ardestani-Jaafari and Delage (2016) con-
sider the generic robust optimization problem for piecewise
linear functions, we are able to analytically solve for the
optimal policy of the specific robust optimization problem
of volume flexibility. Wagner (2018) extends the results of
Mamani et al. (2017) to continuous review and provides use-
ful insights on how to implement robust order quantities in a
dynamic rolling horizon setting. Employing robust optimiza-
tion does not only provide a tractable way to solve large-scale
problems, it also allows for a deeper analysis of policy struc-
ture and related policy parameters. Sun and Van Mieghem
(2019), for instance, introduce, and prove robust optimality of
capped dual index policies in dual sourcing settings with non-
consecutive lead times; settings where little is known about
the optimal stochastic policy despite some asymptotic results
(Xin & Goldberg, 2018). Moreover, they numerically show
their policy performs exceptionally well on a diverse set of
stochastic settings.

We contribute to the aforementioned streams by determin-
ing the robustly optimal policy structure when sourcing costs
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are piece-wise linear and convex. Moreover, we manage to
provide closed-form expressions of the optimal parameters in
settings that we believe to be widely applicable in practice.
As such we propose a tractable model that provides insight
in how orders should be placed to benefit from the contracted
supply capacity.

3 MODEL OF CAPACITATED
SOURCING WITH VOLUME FLEXIBILITY

We model the transportation sourcing problem with volume
flexibility as a periodically reviewed inventory system with
backlogging and piece-wise linear, convex sourcing costs.
The lead time is zero to avoid notational clutter but our results
hold for longer lead times. We will next outline the stochastic
formulation of the problem together with the stochastically
optimal policy and subsequently introduce the robust formu-
lation of the problem. For the remainder of the paper, we use
the following notational conventions: vectors are denoted in

bold; summations
∑b

i=a xi = 0 if b < a; ℕb
a denotes the set

{a, a + 1, … , b}; the slack of a ⋅ x ≤ b is (b − a ⋅ x)+. If the
slack is zero, we say the inequality is binding; and (⋅)+ and
(⋅)− denote the positive and negative part operator, respec-
tively. The proofs of our lemmas, theorems, and corollaries
are relegated to Appendix A in the Supporting Information.

3.1 Stochastic model

The demand dt in each period t is distributed with mean 𝜇t
and standard deviation 𝜎t that are assumed to be known data.
Both moments can be period-dependent and we allow for
correlation between periods. Given lead time zero there are
no outstanding orders and we have the following sequence
of events. Each period t, we first observe the net end-
ing inventory of the previous period xt−1. Based on the
ending inventory, the order quantity qt is determined. The
order arrives immediately before observing and satisfying the
demand dt. Hence, the net inventory at the end of a period
evolves as follows:

xt = xt−1 + qt − dt. (1)

Costs are computed at the end of each period. Any unit left at
the end of the period incurs a holding costs h, while any unit
backlogged incurs a backorder penalty b. Each unit of the
ordered quantity qt incurs a unit sourcing cost of c. Capacity
is flexible: orders exceeding the base capacity incur an addi-
tional sourcing premium of cp per unit. The sourcing costs
hence consist of two line segments with slopes c and c + cp
as depicted in Figure 1a. The weak capacity limit kt can vary
per period. The cost in period t, denoted by Ct, is thus given
by:

Ct(xt, qt) = hx+t − bx−t + cqt + cp(qt − kt)
+.

A feasible policy, 𝜋, consists of a sequence of mappings
f 𝜋t : ℝ ↦ ℝ, t ≥ 1. That is, based on the net ending inventory
position xt−1 we aim to find the order quantity qt = f 𝜋t (xt−1).
Let C𝜋

t denote the cost of policy 𝜋 in period t. The long-run
average cost of policy 𝜋 is given by:

C(𝜋) ≜ lim
T→∞

1
T

T∑
t=1

𝔼
(
C𝜋

t

)
.

Let Π denote the set of all feasible ordering policies. The
objective for stochastic inventory management with volume
flexibility is to find a policy 𝜋 ∈ Π that minimizes the
long-run average cost:

COPT ≜ inf
𝜋∈Π

C(𝜋). ([Stochastic objective])

The structure of the optimal policy 𝜋∗ is known (Por-
teus, 1990), characterized by two base-stock levels S2

t ≤ S1
t ,

as visualized in Figure 1b. It works as follows: Place a base
order of at most kt units to raise the inventory level before
ordering, xt−1, up to S1

t , if that is possible. If, after this ini-
tial order, the adjusted inventory position is still below S2

t ,
order additional units at an overtime premium to reach S2

t .
This introduces a region of inaction, xt−1 ∈ [S2

t − kt, S
1
t − kt],

in which exactly kt units are ordered. The region of inaction
causes the orders to be nondemand replacing and effectively
levels the order quantities: it incurs a higher inventory mis-
match cost to avoid the price premium of the supply above kt.
The optimal order quantity in period t satisfies:

q⋆t (xt−1) =

⎧⎪⎪⎨⎪⎪⎩

(
S2

t − xt−1
)+

if xt−1 < S2
t − kt,

kt if S2
t − kt ≤ xt−1 < S1

t − kt,(
S1

t − xt−1
)+

if S1
t − kt ≤ xt−1.

(2)

To the best of our knowledge, no closed-form expressions
of the period-dependent policy parameters S1

t and S2
t exist.

In the following section, we show how to leverage a robust
rolling horizon formulation to provide insights in how to
efficiently set the base-stock levels. In contrast to stochastic
programming, it only requires the first two moments of the
demand distribution rather than the full distribution. More-
over, it is more flexible in comparison to heuristics used in
practice to include past and future information about demand
and capacity.

3.2 Robust model

We adopt a robust rolling horizon formulation similar to
Sun and Van Mieghem (2019) that works as follows. In
each period t, we look ahead and optimize order quantities
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over a fixed planning horizon of length H. We determine
the robustly optimal ordering vector qt=(qt, … , qt+H−1) that
minimizes the worst-case cost over all possible demand
realizations dt=(dt, … , dt+H−1) ∈ Ωt. The uncertainty set Ωt
denotes the set of all feasible demand realizations within
the planning horizon ℕt+H−1

t . We denote the minimum
and maximum cumulative demand from period t to period
n by

D
n
= min

(dt ,…,dn)∈Ωt

n∑
i=t

di and Dn = max
(dt ,…,dn)∈Ωt

n∑
i=t

di, (3)

respectively.
In each period t, we optimize the quantity vector qt by

looking ahead over the planning horizon [t, t + H − 1]. Yet,
while we optimize for the full quantity vector qt, we only
implement its first element qt in period t. We then observe
demand dt, proceed to the next period and update the inven-
tory state using inventory balance equation (1). Then we
re-optimize in period t + 1 the quantity vector qt+1, and
repeat this process at infinitum.

The optimization problem we solve in every period is
similar to Mamani et al. (2017) but adapted to include a
piece-wise linear sourcing cost:

min
qt

∑
n∈ℕt+H−1

t

(cqn + yn + zn) [Robust objective]

s.t. yn ≥ h(xt−1 +

n∑
i=t

qi − D
n
), ∀n ∈ ℕt+H−1

t , [n]

yn ≥ −b(xt−1 +

n∑
i=t

qi − Dn), ∀n ∈ ℕt+H−1
t , [n]

zn ≥ cp(qn − kn), ∀n ∈ ℕt+H−1
t , [n]

zn, qn ≥ 0, ∀n ∈ ℕt+H−1
t .

(4)

The objective function contains for each period n ∈ ℕt+H−1
t

the sourcing costs at the contracted rate (cqn), the worst case
inventory mismatch cost (yn) and the sourcing costs at the
premium rate (zn). Constraint sets t = (t, … ,t+H−1) and
t = (t, … ,t+H−1) bound the cumulative inventory hold-
ing/backlog costs, respectively, to their worst case values.
The flexibility constraint set  t = (t, … ,t+H−1), finally,
enforces the premium rate for orders exceeding the periodic
capacity constraint kn. The order quantities qn are restricted
to be nonnegative.

It remains to describe the uncertainty set Ωt. We adopt
the uncertainty set formulation of Mamani et al. (2017) that
bounds the demand per period and the cumulative demand
over several periods. This relates to practice in an intuitive
way: the one-period ahead demand forecast may deviate
heavily but the aggregate forecast error over several periods

tends to be more stable. We refer to Mamani et al. (2017)
(Subsection 2.3) for the general description of the uncer-
tainty set and directly introduce the parameterization of the
uncertainty set that we will use throughout this study. The
parameterization is inspired by the CLT and was introduced
by Bandi and Bertsimas (2012). The uncertainty set Ωt in
period t consists then of two sets of constraints: (1) peri-
odic constraints that bound each period’s demand to be be
within an interval around the periodic means: 𝜇n − Γ̂n𝜎n ≤

dn ≤ 𝜇n + Γ̂n𝜎n; and (2) cumulative constraints that bound
the cumulative demand over multiple periods around the sum
of the mean demands:

∑n
i=t 𝜇i − Γn𝜎

n
t ≤

∑n
i=t di,≤

∑n
i=t 𝜇i +

Γn𝜎
n
t . The cumulative bounds use 𝜎n

t representing the stan-
dard deviation of the cumulative demand from period t to
period n, which equals (e′n−t+1𝚺

n
t en−t+1)1∕2, in which en−t+1

is a 1 × (n − t + 1) vector of ones, 𝚺n
t is the covariance matrix

of demands from periods t to n and e′ denotes the transpose
of e.

Note that we adopt a rolling horizon approach and start
indexing from period t. Nonetheless, demand realizations
before period t may influence demand within the plan-
ning horizon when demand is correlated. Each period, we
thus update the vector of means 𝝁t = (𝜇t, … , 𝜇t+H−1) and
the covariance matrix 𝚺

n
t using the multivariate normal

distribution conditioned on the past realizations to ensure the
correlation is accounted for. In Section 6, we adopt the latter
approach on a numerical example where demand is correlated
according to an AR(1) model.

Both sets of bounds �̂�t = (Γ̂t, … , Γ̂t+H−1) and 𝚪t =

(Γt, … , Γt+H−1) are tunable parameters that determine the
maximum deviation from the (cumulative) mean demand.
Even though they are period-dependent, they may be set
equal for each period such that we only have two degrees
of freedom to determine the level of conservativeness. Sun
and Van Mieghem (2019), for instance, implement the same
Γ̂n and Γn for all n ∈ ℕt+H−1

t in their robust formulation
of the dual sourcing inventory problem. We will show in
Subsection 6.1 how keeping the period-dependent maximum
deviations equal for each period also yields an efficient
well-performing heuristic policy in our setting.

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.14069 by C
ochrane Portugal, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL ROBUST INVENTORY MANAGEMENT WITH VOLUME FLEXIBILITY 7
Production and Operations Management

The above formulation results in a symmetric uncertainty
set:

Ω
Sym
t =

{
dt = (dt, … , dt+H−1) : −Γn ≤

n∑
i=t

di − 𝜇i

𝜎n
t

,

≤ Γn, 𝜇n − Γ̂n𝜎i ≤ dn ≤ 𝜇n + Γ̂n𝜎n, ∀n ∈ ℕt+H−1
t

}
.

(5)

For the symmetric formulation, we obtain the minimum and
maximum cumulative demand for the specific parameteriza-
tion of the uncertainty set (see Supporting Information of
Mamani et al., 2017, eqs. 21 and 22).

D
n
=

n∑
i=t

𝜇i − Δdn and Dn =

n∑
i=t

𝜇i + Δdn,

with

Δdn = min

{
n∑

i=t

Γ̂i𝜎i, Γt+H−1𝜎
t+H−1
t +

t+H−1∑
i=n+1

Γ̂i𝜎i

}
.

In Appendix A (in the Supporting Information), we
also provide the asymetric formulation of the uncertainty
set.

4 SOLUTION OF THE ROBUST MODEL

4.1 Solution for the uncapacitated system

We first review some established results in robust sourcing
with a linear sourcing cost, from here on denoted as the unca-
pacitated system, as we rely on these results in our system
with capacities. The uncapacitated system is a special case
of our formulation by letting ki → ∞ for all i, or by letting
cp = 0, that is, the linear program must be solved (see Equa-
tion 4) without the constraint set  t. Both Bertsimas and
Thiele (2006) and Mamani et al. (2017) show robust optimal-
ity of the base-stock policy in the uncapacitated system. The
expression of the worst-case demand in Mamani et al. (2017),
see also Equation (3), allows for a closed-form expression of
the optimal base-stock level in every period.

We denote the optimal order quantities that solve the
deterministic linear program in the uncapacitated system
(Equation 4 without the constraint set  t) as q̂t. They can
be obtained by solving the following recursion backward:

n∑
i=t

q̂i =

⎧⎪⎨⎪⎩
(

bDn+hD
n

b+h
− xt−1

)+

, n ∈ ℕT−u+1
t

0, n ∈ ℕt+H−1
T−u

(6)

with ub < c ≤ (u + 1)b, where u is the period after which
it is cost-efficient to incur the backlog penalty until the
end of the planning horizon, hence nothing is ordered for
i ≥ T − u. This equation is obtained by balancing the worst
case holding and worst case backlog costs in each period.
In each period i ≤ T − u + 1, constraints i and i are both
binding, otherwise we can either increase or reduce q̂i to
obtain savings.

Equation (6) can thus be formulated using cumulative base-
stock levels:

Ŝn = max

(
bDn + hD

n

b + h
, xt−1

)
, (7)

where xt−1 denotes the inventory at the start of period t
(before ordering). Note that we include the inventory state
in the definition of the cumulative base-stock levels. This
simplifies later equations as the base-stock levels account
for high starting inventories. The cumulative order quan-
tity in period n becomes

∑n
i=t q̂n = Ŝn − xt−1. Any individual

order q̂n is thus computed by comparing the projected inven-
tory position (i.e., the sum of inventory on hand and order
quantities in absence of demand) with the worst-case future
cumulative demands. Interestingly, the optimal order-up-to-
level of this robust policy equals a newsvendor solution
for the stochastic model as if the cumulative demand were
uniformly distributed over the interval [D

n
,Dn].

The rolling horizon optimal order in period t is obtained by
solving

q̂⋆t =

(
bDt + hD

t

b + h
− xt−1

)+

= Ŝt − xt−1. (8)

Using the parameterizations of the uncertainty set as intro-
duced in Subsection 3.2, the base-stocks in period t are

Ŝt =

⎧⎪⎪⎨⎪⎪⎩
max

(
𝜇t + Γ̂t𝜎t

b − h
b + h

, xt−1

)
for dt ∈ Ω

Sym
t

max

(
b

b + h
(𝜇t + Γ̂t𝜎t), xt−1

)
for dt ∈ Ω

Asym
t

.

(9)

4.2 Solution for the capacitated system

We determine the optimal robust order policy and pol-
icy parameters for piece-wise linear and convex sourcing
costs starting from the solution of the uncapacitated sys-
tem described in Subsection 4.1. Note that the robustly
optimal order quantities q̂t of a system with no capacity lim-
its are a feasible solution to our linear program with yn =

h(xt−1 +
∑n

j=t q̂j − D
n
) = −b(xt−1 +

∑n
j=t q̂j − Dn) and zn =

cp(q̂n − kn)+. Earlier, we visualized an example in Figure 2a.
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8 GIJSBRECHTS ET AL.Production and Operations Management

Subsequently, we show how this feasible solution, which is
optimal in the uncapacitated system, can be improved under
a piece-wise linear sourcing cost by shifting orders between
periods to avoid the premium in periods where the orders
exceed the base capacity at the expense of increasing the
inventory mismatch costs. Clearly, if none of the capacity
constraints, n, is tight under feasible ordering quantities, q̂n,
then q̂n is optimal in a system with volume flexibility too.
This is, for instance, the case if all kn are sufficiently large.
Otherwise, we can improve the feasible q̂n by advancing or
postponing orders as Lemma 1 shows:

Lemma 1. When the inventory constraints i and i are
tight for all i ∈ ℕt+H−1

t , advancing (postponing) 𝜔 units of
q̂n from period n to period j increases the inventory mismatch
by h𝜔(n − j) (b𝜔(j − n)) while reducing the sourcing costs by
cp𝜔 if n is tight and j has available slack kj − q̂j > 𝜔.

Lemma 1 shows that in the system with piece-wise lin-
ear sourcing costs, the robustly optimal order quantities q̂ of
an uncapacitated system can be improved by shifting orders
from capacitated periods to periods that have a capacity slack,
if h < cp or if b < cp. If the premium cost dominates, that is,
h and b are smaller than the premium cp we must solve the
linear program, given in (4), to determine the optimal order
quantities. This includes the special case of a hard capacity
constraint (cp → ∞) that has been treated in Mamani et al.
(2017). They propose using the robust linear order quantities
and capping them by the capacity constraint. This approach
(for h, b ≤ cp, cp → ∞) essentially only postpones orders,
while the Lookahead Peak-Shaving policy (for h ≤ cp ≤ b)
only advances orders. Even though we investigate different
systems, our work may help to understand why their pro-
posed policy is not optimal in the likely case where h < b. In
this case, shifting orders to earlier periods is more desirable
than shifting orders to later periods. In many practical set-
tings, such as the one we study at our manufacturer, service
levels are high such that b ≫ cp. As such, for the remain-
der of the paper, we assume h < cp < b. Then, orders from
capacitated periods will always be shifted forward to prior
uncapacitated periods. When b < cp < h, orders will be post-
poned rather than shifted forward, and all insights remain.
When cp < h < b orders are never shifted and we recover the
uncapacitated system. Henceforth, we thus assume:

Assumption 1. The flexibility premium does not exceed the
backlog penalty and the holding cost does not exceed the
flexibility premium, that is, h < cp < b.

Under Assumption 1, it is only valuable to shift orders for-
ward to avoid the sourcing premium cost. There is a potential
need to shift orders from period s to the current period t if
the uncapacitated order quantity exceeds the available base
capacity. In Figure 2a, for instance, in peak-demand peri-
ods 3, 5, and 6 the uncapacitated orders exceed the available
capacity. There is no need to shift orders from a future period
s if the uncapacitated order quantity in this period is less than

the available base capacity in the same period. This happens
in low-demand periods 2 and 4 in Figure 2a. A future low-
demand period reduces the need to shift orders to the current
period as the slack capacity can absorb some or all of the units
above base capacity of the later peak-demand periods. See for
instance how periods 2 and 4 absorb some of the units above
base capacity of later peak-demand periods in Figure 2b. We
define the shifting need as the remaining amount of units we
want to shift to the current period after all future low-demand
periods have absorbed units from later peak-demand periods.
The shifting need is thus visualized by the remaining orders
above capacity in Figure 2b. Formally, Definition 1 expresses
the shifting need from periods within the lookahead horizon
(period t + 1 to period s) toward period t:

Definition 1. Let q̂i be the optimal order quantities of the
uncapacitated system as defined in Equation (6). The shifting
need at time t over a lookahead horizon of s periods is defined
as

𝜏s
t := max

i∈ℕt+s
t+1

(
i∑

j=t+1

(q̂j − kj)

)+

.

We further define the earliest period in which the maximum
is attained as

M(𝜏s
t ) := min arg max

i∈ℕt+s
t+1

(
i∑

j=t+1

(q̂j − kj)

)+

.

Here, the sum
∑i

j=t+1(q̂j − kj) expresses the total shifting
need to shift orders to the current period t from future periods
t + 1 up to period i. If the sum is negative, it implies that there
is more capacity slack than sourcing above capacity such that
no units need to be shifted to the current period. The sum is
positive when the periods t + 1 to i − 1 have insufficient spare
capacity to handle the peak demand in i. In this case there is
a shifting need from period i to t.

We summarize three observations with respect to the
shifting need in Corollary 1:

Corollary 1. The shifting need has sensitivities:

(a) 𝜕𝜏s
t∕𝜕xt−1 ∈ {0, −1},

(b) 𝜕𝜏s
t∕𝜕kn ∈ {0, −1}∀n ∈ ℕt+s

t+1,
(c) Δ𝜏s

t∕Δs ≥ 0.

First, the shifting need is indirectly dependent on the
starting inventory due to the dependency on the order quan-
tities of the uncapacitated system. If the starting inventory is
large, the uncapacitated order quantities are lower, and vice
versa. Thus, with more starting inventory, the shifting need
decreases (or stays the same, if there was no shifting need).
Second, any increase in the capacity of a future capacity leads
to a decrease in the shifting need if that period had an impact
on the shifting need. Else, the shifting need will stay constant,
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OPTIMAL ROBUST INVENTORY MANAGEMENT WITH VOLUME FLEXIBILITY 9
Production and Operations Management

if there was no shifting need in that period. Third, the shifting
need naturally increases (or remains constant) when shifting
is considered over a longer horizon s.

Formulating the shifting need with respect to the worst-
case demand realizations, as defined in (3), results in

𝜏s
t =

⎛⎜⎜⎜⎝ max
i∈ℕt+s

t+1

(
bDi + hD

i

b + h
−

bDt + hD
t

b + h
−

i∑
j=t+1

ki

)

−

(
xt−1 −

bDt + hD
t

b + h

)+⎞⎟⎟⎟⎠
+

. (10)

The shifting need consists of two parts: the first part describes
the potential shift to period t independent of the starting
inventory, the second part reduces the shift by the capacity
that becomes available when starting inventory is high and
exceeds the base-stock of period t.

We find that less volume is shifted forward when hold-
ing costs increase, but more volume is shifted forward when
backlogging and the overtime premium increase. This result
is intuitive: when it is more expensive to hold inventory, fewer
orders will be shifted forward to avoid future overtime pre-
miums; likewise, if the backlog penalty increases, less orders
will be postponed to avoid the overtime premium in the cur-
rent period. Based on Equation (10), we obtain the sensitivi-
ties of the shifting need captured by the following corollary:

Corollary 2. The shifting need has sensitivities:

(a) 𝜕𝜏s
t∕𝜕h ≤ 0,

(b) 𝜕𝜏s
t∕𝜕b ≥ 0.

From Lemma 1, we observe that it is profitable to shift
orders as long as we do not shift more than ⌊cp∕h⌋ periods.
Shifting more than ⌊cp∕h⌋ periods forward is never profitable
as the increase in inventory holding cost is no longer offset
by the premium incurred by sourcing above capacity in
a future period. From now on, we refer to s = ⌊cp∕h⌋ as
the lookahead horizon. The length of our planning hori-
zon H should exceed the lookahead horizon, denoted by
s = ⌊cp∕h⌋, to ensure we capture all cost savings compared
to the uncapacitated system. Moreover, we only place orders
when the sourcing cost c exceeds the cost of backlogging
until the end of the planning horizon. Given that we adopt
an infinite rolling horizon approach, we want to avoid the
end-of-horizon effect where our policy would stop ordering.
The length of the planning horizon H should thus also exceed⌊c∕b⌋. Hereafter we thus assume:

Assumption 2. The length of the planning horizon satisfies:
H > ⌊cp∕h⌋ and H > ⌊c∕b⌋.

We can now formulate the robustly optimal policy for the
capacitated system. The robustly optimal policy advances

orders from periods with demand peaks to period t, as long
as there is spare capacity to source at regular cost c in period
t. If there is no slack capacity in period t, the order quantity
is identical to the order quantity in the uncapacitated sys-
tem. We term this policy the Lookahead Peak-Shaving policy
as it looks ahead and shaves the peak of the order quanti-
ties in future capacitated periods while increasing the current
period’s order quantity when there is spare capacity in the
current period (see Figure 2).

Definition 2. The Lookahead Peak-Shaving policy over
a lookahead horizon of s periods is a generalized base-
stock policy where the lower base-stock level Ŝt equals the
base-stock level of an uncapacitated system and the upper
base-stock level equals Ŝt + 𝜏s

t . The order quantities under a
Lookahead Peak-Shaving policy are

qt =

⎧⎪⎨⎪⎩
Ŝt − xt−1 if xt−1 < Ŝt − kt,

kt if Ŝt − kt < xt−1 < Ŝt + 𝜏t − kt,

Ŝt + 𝜏s
t − xt−1 if Ŝt + 𝜏t − kt < xt−1.

(11)

We can prove this policy to be robustly optimal by
repeating Lemma 1 until no further improvement is pos-
sible, which converges to the optimal solution as our
problem is convex (a formal derivation is provided in the
proof of Theorem 1 in Appendix A in the Supporting
Information).

Theorem 1 (Optimality of the Lookahead Peak-Shaving
policy). A Lookahead Peak-Shaving policy with a looka-
head horizon of s = ⌊cp∕h⌋ periods is robustly optimal for
capacitated sourcing with volume flexibility.

Hence, under the optimal policy, we will always order up
to the base-stock level of the uncapacitated system Ŝt − xt−1.
If that order exceeds the base capacity, we cannot reduce the
premium cost in the following periods as all base capacity
has been used. Otherwise, if there is unused capacity, we will
order more than in the uncapacitated system if this reduces
the premium in the following periods. This results in the same
policy structure that is optimal in the stochastic setting as
shown by Porteus (1990): first place a base order to raise the
inventory position up to the highest base-stock level, if pos-
sible (else all base capacity is used). After this base order,
if the adjusted inventory position is still below a low base-
stock level, order additional units at an overtime premium
to raise the inventory position up to the lowest base-stock
level. Note that when there is nothing to shift (e.g., when
the available capacity is high) or it is not valuable to shift
(e.g., when the cost premium is small), our policy reduces
to a single base-stock that equals the the base-stock in the
uncapacitated setting.

A key contribution of our work is to obtain an explicit
expression of the shifting need. Including the worst-case
demand realizations derived using the symmetric uncertainty
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10 GIJSBRECHTS ET AL.Production and Operations Management

set (see Equation 5) into our expression of the shifting need
results in:

Theorem 2 (Shifting need for Ωsym). Let 𝜇i − Γi𝜎i > 0 for all

i ∈ ℕt+H−1
t . Let 𝜅 = max{i :

∑i
j=t Γ̂j𝜎j ≤ (Γt+H−1𝜎

t+H−1
t +∑t+H−1

j=t Γ̂j𝜎j)∕2}, s be the shifting horizon and 𝜅′ =

min(𝜅, t + s), then

𝜏s
t =

(
max

{
max
i∈ℕ𝜅′

t+1

(
i∑

j=t+1

(
𝜇j +

b − h
b + h

Γ̂j𝜎j

)
−

i∑
j=t+1

kj

)
,

max
i∈ℕt+s

𝜅′+1

(
i∑

j=t+1

𝜇j +
b − h
b + h

(
Γt+H−1𝜎

t+H−1
t +

i∑
j=t+1

Γ̂j𝜎j − Γ̂t𝜎t

)

−

i∑
j=t+1

kj

)}
+

−

(
xt−1 − 𝜇t −

b − h
b + h

Γ̂t𝜎t

)+
)+

.

The expression of the shifting need simplifies in a station-
ary environment where both k is a constant and the demand
in each period is independent and identically distributed with
mean 𝜇 and standard deviation 𝜎:

Corollary 3 (Shifting need for Ωsym (iid) and constant k).

Let 𝜇 − Γ𝜎 > 0. Let 𝜃 = (H +
√

H)∕2, 𝜖 = 𝜃 − ⌊𝜃⌋ and let

𝜃′ = min(s, ⌊𝜃⌋). Let 𝜇 −
b−h

b+h
Γ𝜎 ≤ k < 𝜇 +

b−h

b+h
Γ𝜎, then

𝜏s
t =

(
(𝜃′ − 1)

(
𝜇 +

b − h
b + h

Γ𝜎 − k

)
+

(
𝜇 −

b − h
b + h

Γ𝜎(1 − 𝜖) − k

)+

−

(
xt−1 − 𝜇 −

b − h
b + h

Γ𝜎

)+
)+

.

The aforementioned expressions are in closed form but rely
on the defined uncertainty set. Prior to applying our findings
in practice, we first must provide parameterizations of the
uncertainty set, which we do in Subsection 6.1 but first we
provide some more analytical results related to the amount of
shifting in various scenarios.

5 ANALYSIS OF THE ROBUST
SOLUTION FOR THE CAPACITATED
SYSTEM

5.1 Sensitivity of peak-shaved quantity
with respect to capacity changes

The Lookahead Peak-Shaving policy shifts orders from future
peak-demand periods to the current period in order to avoid
the sourcing cost premium. We denote the peak-shaved quan-
tity, that is, the amount of units shifted to the current period
t compared to the uncapacitated system described in Sub-
section 4.1, as Δqt := q∗t − q̂t. This amount is dependent
on how tight capacities are and how costly it is to source

above the base capacity compared to the inventory mismatch
costs. Figure 1b illustrates both the optimal order quantity
q∗t and the inventory-dependent peak-shaved quantity Δqt. In
this section, we investigate how the amount of peak shav-
ing varies under different capacity scenarios and for different
capacity premiums. Below we outline our findings and focus
on the related managerial implications, while a technical
derivation of the results is provided in Appendix A in the
Supporting Information.

The quantity of orders that can be peak shaved from future
periods to the current period is determined by the current
period’s base capacity and the shifting need, denoted by 𝜏s

t ,
which depends on future capacities. If the current period’s
base capacity is tight, meaning that there is no capacity slack,
no orders will be peak shaved to the current period. How-
ever, if there is capacity slack, orders will be peak shaved to
the current period if there is a shifting need, that is, if future
capacities are smaller than the optimal amount ordered in an
uncapacitated system. In such cases, we can peak shave either
the total shifting need, denoted by 𝜏s

t , if ample base capacity is
available, or we can peak shave units until all spare capacity,
(kt − q̂t)

+, is utilized. We have formalized these observations
with respect to the current capacity in Proposition 1.

Proposition 1. For given capacities kt+1, … , kt+H−1 the peak-
shaved quantity, that is, the amount shifted to period t from
future periods, is given by Δqt = min((kt − q̂t)

+, 𝜏s
t ).

Figure 3a depicts the relationship between the current
period’s base capacity kt (horizontal axis) and the peak-
shaved quantity (vertical axis), while holding future base
capacities constant. Simply put, the more base capacity avail-
able in the current period, the more orders can be peak shaved
from future periods to the current period. When the current
period’s base capacity is low, the uncapacitated order quantity
already utilizes the entire base capacity, which means no fur-
ther units can be peak shaved to the current period. However,
if there is slack capacity, that is, if the base capacity exceeds
the uncapacitated order quantity, all additional capacity can
be utilized for peak shaving orders. Hence, increasing the
current period’s base capacity by one unit results in a cor-
responding increase in the peak-shaved quantity, until the
maximum amount that needs to be shifted, denoted by 𝜏s

t ,
is reached. Further increasing the base capacity beyond this
point has no effect on the peak-shaved quantity, indicating
that adding more capacity is not beneficial when the cur-
rent capacity is already high and sufficient future capacity is
available. This suggests that most benefits of adding capac-
ity occur when current capacity is low and when the shifting
need is large, which is the case when future capacities are
low. Such a scenario may occur for instance when capacity is
tight for an upcoming weekend with large demand, such that
having more capacity during the preceding week may allow
the manufacturer to anticipate the busy weekend.

The peak-shaved quantity is also dependent on the future
capacity levels, as we show in Figure 3b. In general, higher
future capacities decrease the amount that needs to be peak
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(a) Varying kt, Fixed ki for all i > t (b) Fixed kt, varying ki′ for any i′ > t

F I G U R E 3 The peak-shaved quantity for varying base capacities of the current period (panel a) or varying future capacities (panel b).

shaved as it reduces the shifting need. If there is peak shaving
occurring for a given vector of base capacities, then reduc-
ing the capacity in a future period may (1) not change the
amount peak-shaved, if the current period’s order already
uses the base capacity, (2) reduce the amount peak-shaved as
future capacity becomes available and sourcing above base
capacity in the current period is no longer needed (i.e., the
shifting need becomes smaller than the slack available) or
(3) not change the amount peak-shaved, if the future capac-
ity is already large enough to absorb all units shifted from
that future period and later periods such that further increas-
ing future capacity does not result in more peak shaving to
the current period. Proposition 2 formalizes the relationship
between the peak-shaved quantity and base capacities.

Proposition 2. Let the capacities in all periods of the plan-
ning horizon be given by kt, kt+1, … , kH. Let i′ be the period
for which the shifting need obtains its maximum, that is, i′ =
M(𝜏s

t ). Let i be a period that has direct impact on the shifting
need, that is, i ∈ [t + 1, i′]. Let k′i be the capacity in period i
for which the shifting need 𝜏t(k

′
i ) is equal to the capacity slack

available in period t, that is, 𝜏i′
t (k′i ) = kt − q̂t and let k

′′

i be the
capacity for which all units shifted in periods later than i can

be absorbed, that is, k
′′

i = q̂i + (
∑i′

j=i+1(q̂j − kj))
+.

For any period i ∈ [t + 1, i′], the amount shifted to period
t depends on the capacity ki in period i as follows

Δqt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, ki ≤ q̂i

kt − q̂t, q̂i < ki ≤ k′i

𝜏i′
t , k′i ≤ ki < k

′′

i

𝜏i−1
t , k

′′

i ≤ ki

.

Figure 3b illustrates the scenario where future base capac-
ities are increased while the current period’s base capacity is
held constant. We illustrate the case when we are currently
peak shaving orders from period i to period t. Increasing the
capacity in period i reduces the need to peak shave orders to
period t. This might occur if carriers inform our manufacturer
that slightly more transportation capacity will be available in
the near future, temporarily increasing the base capacity for a
future day. The increase of ki results in a decreasing shifting
need 𝜏s

t , as fewer units need to be peak shaved. Interestingly,
at low future capacity levels, even though 𝜏s

t decreases, we
observe no initial decrease on units being peak shaved. In
that region, the base capacity of the current period is already
fully utilized and an increased future capacity will not reduce
the ordered amount (or equally the peak-shaved amount). The
order quantity will decrease linearly only when more future
capacity (k′i in Figure 3b) becomes available. A unit increase
in future capacity relates directly to a unit decrease in peak
shaving. It is thus worth noting that not every small increase
in future transportation capacity will necessarily reduce the
amount of peak shaving for our manufacturer. At one point
(k

′′

i in Figure 3b) there is sufficient capacity in period i such
that no orders from i are peak shaved to period t. In addi-
tion, the base capacity in period i is large enough to also shift
future demand peaks to period i instead of t. At this point the
shifting need does not decrease anymore for an increase in
capacity in i. It is only determined by period t + 1 to t + i − 1
alone.

In addition to the role of the base capacities, the amount
shifted is also dependent on the premium that is to be paid on
flexible transportation supply. A larger premium of the trans-
portation market encourages the manufacturer to peak shave
more units to the current period, avoiding the future premium.
The premium has an impact on the amount peak-shaved by
increasing the lookahead horizon. A higher premium leads

 19375956, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.14069 by C
ochrane Portugal, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 GIJSBRECHTS ET AL.Production and Operations Management

F I G U R E 4 Peak-shaved quantity Δqt for different premium prices cp.

to more periods being included in the lookahead horizon as
it becomes beneficial to shift units forward by more periods.
Proposition 3 formalizes this insight:

Proposition 3. Let the lookahead horizon be s = ⌊cp∕h⌋.
The lookahead horizon increases with increasing premium
cp. We denote by c′p the premium, for which the associated
lookahead horizon is the first to exceed the capacity slack
in period t, that is, the minimal cp for which 𝜏s

t ≥ kt − q̂t,
then

Δqt =

⎧⎪⎨⎪⎩
𝜏s

t for all cp ≤ c′p

(kt − q̂t)
+ for all cp > c′p.

Figure 4 plots the peak-shaved quantity Δqt as a func-
tion of the premium cp. The cost premium affects the units
shifted only by increasing the lookahead horizon (see The-
orem 1). For example, if h < cp ≤ 2h, it is only beneficial
to move units from period t + 1 to t. Shifting units from
period t + 2 to t incurs costs of 2h but only avoids costs of
cp that is not beneficial. If 2h < cp ≤ 3h then shifting from
period t + 2 becomes beneficial. We thus observe a step-wise
function: as the penalty increases, it becomes attractive to
peak shave from periods further in the future. This func-
tion is piece-wise constant and increases (or stays constant)
as the premium exceeds h, 2h, … , sh. Whether the amount
shifted increases or not depends on the shifting needs 𝜏s

t
that are related to a shifting horizon of s (s being equal to
1,2,3…).

At some point, however, any increase in the shifting need
may not increase the units peak-shaved, as the order quantity
is capped by the base capacity of the current period kt. This is
indicated by the dashed line in Figure 4. The size of the step-
wise increases may vary as they are dependent on the future
capacities and demand.

5.2 Analysis of the shifting need in
nonstationary environments

Before performing an extensive numerical study, we demon-
strate how the shifting need behaves in various settings
with nonstationary demand. Figure 5 plots three settings of
nonstationary demand (top panels) and the corresponding
base-stock levels and shifting need (bottom panels). For ease
of exposition, all scenarios have a fixed capacity of 100 units
per period (orange line, top panels). Given that the shift-
ing need 𝜏t depends on xt−1, it is sample-path dependent.
To visualize it, we adopt an extreme case where we assume
that xt−1 = 0 in each period and consider each point in time
as the starting point of decision-making, that is, we ignore
past demand evolution. In Section 6, we do carry over inven-
tory when evaluating the cost performance of the Lookahead
Peak-Shaving policy.

The top panel of Figure 5a corresponds to a scenario with
alternating sequences of high and low demand. The standard
deviation is constant. The bottom panel of Figure 5a shows
the corresponding low base-stock level (circles), high base-
stock level (triangle) and the shifting need (length of the blue
line). The shifting need thus corresponds to the volume that
would be shifted forward, if sufficient base capacity is avail-
able in the current period and the inventory is below the
low base-stock level. The lower base-stock levels (circles)
are constant over the periods where the demand is constant
(periods 1–10, 11–20, …). It equals the robustly optimal
base-stock level of the uncapacitated system. The upper base-
stock level (triangles) shows the key dynamics of the robust
Lookahead Peak-Shaving policy. In high demand periods, the
upper base-stock level is high as more units are peak shaved,
if base capacity is available. If the expected demand drops
within the shifting horizon, less orders are peak shaved. The
shifting horizon in this example is four periods, thus the high
base-stock level decreases in periods 7–10 and 27–30, four
periods before the expected demand drops. At the same time,
when the expected demand raises within the shifting horizon,
more orders are peak shaved. We note that the actual peak-
shaved quantity is dependent on the demand realizations. The
shifting need only indicates the amount that shall be shifted to
earlier periods, if base capacity is available. Thus, the shift-
ing need anticipates drops (raises) in the expected demand,
and decreases (increases) as a result to decrease (increase)
the amount shifted forward in low (high) demand period.

The same pattern arises, when we keep the expected
demand constant and vary the standard deviation over time
(Figure 5b). In this case, the pattern for periods with high
demand uncertainty resembles the pattern for periods with
high expected demand in Figure 5a. Peak shaving increases
for periods with high uncertainty and reduces for periods
with low uncertainty (Figure 5b, bottom panel). In this way,
additional inventory is kept when higher uncertainties are
expected over the shifting horizon.

Figure 5c illustrates a cyclic mean but constant coefficient
of variation. The lower base-stock level follows the same pat-
tern as the expected demand curve. We observe how the upper
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OPTIMAL ROBUST INVENTORY MANAGEMENT WITH VOLUME FLEXIBILITY 13
Production and Operations Management

(a) Periodic μ, constant σ (b) Constant μ, periodic σ (c) Cyclic μ, constant σ/μ

F I G U R E 5 We show for three settings with nonstationary demand (top panels) how the base-stock levels and shifting need (bottom panels) anticipates
changes in demand. The shifting need decreases when future demand is low, and vice versa. This anticipative behavior explains the strong numerical
performance of our numerical experiment in Section 6. Note: We use the following parameters: h = 1, b = 9, c = 0, cp = 4, Γ̂ = 2, Γ = 2. [Color figure can be
viewed at wileyonlinelibrary.com]

base-stock level and the shifting need exhibit a similar pat-
tern as the demand, but one shifted forward. The demand
curve exhibits peaks (valleys) in periods 6, 26, and 46 (16 and
36) and the upper base-stock level exhibits peaks (valleys)
in periods 4, 24, and 44 (14 and 34). Thus, the upper base-
stock level exhibits the peaks (valleys) when the cumulative
expected demand over the shifting horizon reaches its peak
(valley). In those periods, the most (the least) is supposed to
be peak shaved.

6 NUMERICAL EXPERIMENT

We first perform an extensive numerical study where we let
demand be nonstationary and correlated, and capacities fluc-
tuate. Subsequently, we show the performance using a real
data set of a manufacturer. In all settings, the evaluation
criterion is the conventional expected cost rather than the
worst-case cost realizations.

6.1 Tuning the uncertainty set for practical
implementation

The remaining challenge in utilizing our robust Lookahead
Peak-Shaving policy is fine-tuning the uncertainty parameter
sets 𝚪t and �̂�t. To avoid the computational burden to opti-

mize these values, we propose to keep the period-dependent
values of both sets equal in each period. Formally, we intro-
duce two constants, Γ and Γ̂, and set Γi = Γ and Γ̂i = Γ̂ for
all i in ℕt+H−1

t , respectively. This is appealing as it reduces
the search space from two times the length of the planning
horizon (2H) to only two dimensions. We thus search over
Γ and Γ̂ from which the respective base-stock levels directly
follow as per Theorem (1) and Corollaries (3) and (5). We
use the symmetric (asymmetric) uncertainty set when 𝜇i −

Γ𝜎i ≥ 0 (𝜇i − Γ𝜎i < 0). This way we capture that demand is
strictly nonnegative.

The Lookahead Peak-Shaving policy is optimal when
demand is stationary and not correlated, and when capacity
does not fluctuate: Γ and Γ̂ can be set such that the resulting
base-stock levels coincide with the optimal ones (which are
stationary as long as the planning horizon is sufficiently long
to discard end-of-horizon effects). The strength of our results,
however, stems from applying our closed-form expressions in
more complex environments where demand is correlated and
nonstationary, and where capacities fluctuate.

6.2 Two benchmark heuristics

To demonstrate the numerical performance of the Lookahead
Peak-Shaving policy, we construct two benchmark heuristics.
Both adopt the optimal policy structure but set the base-stock
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14 GIJSBRECHTS ET AL.Production and Operations Management

levels differently. First, we propose the z-score policy that
uses the first two moments as follows: S1

t = 𝜇t + z1𝜎t and
S2

t = 𝜇t + z2𝜎t. Both z1 and z2 are constants that we optimize
using full enumeration:

Definition 3 (The z-score policy). Set S1
t = 𝜇t + z1𝜎t and

S2
t = 𝜇t + z2𝜎t for all periods where z1 and z2 are tun-

able parameters.

In practice, this corresponds to a policy that sets the
base-stock levels using the forecast and its error. The z-
score policy, however, does not take into account future
period’s demand that may limit its performance in several
settings. Hence, we also compare our policy against an alter-
native benchmark that is forward-looking: the days-of-sales
policy where we compute the base-stock levels using the
expected days-of-sales, which we label the days-of-sales
policy:

Definition 4 (The days-of-sales policy). Set

S1
t =

∑t+⌊m1⌋−1
i=t 𝜇i + (m1 − ⌊m1⌋)𝜇t+⌊m1⌋ and S2

t =∑t+⌊m2⌋−1
i=t 𝜇i + (m2 − ⌊m2⌋)𝜇t+⌊m2⌋ for all periods where m1

and m2 are tunable parameters.

In contrast to the z-score benchmark policy, the days-of-
sales policy incorporates, and adapts to, future fluctuations
in demand. In contrast to the z-score benchmark policy,
the days-of-sales policy incorporates, and adapts to, future
fluctuations in demand. However, note that the days-of-
sales policy only depends on the expected demand in a
period (first moment) and not its variability (second moment).
Thus, either policy can dominate depending on whether
the first or second moment fluctuations dominate. In our
numerical experiment, we will show the value of our Looka-
head Peak-Shaving policy compared to both benchmark
policies.

6.3 Performance on synthetic data set

We set the unit holding cost h = 1 and scale all other costs in
relation to the unit holding cost without loss of generalization.
We set the unit backlog cost b = 9 to reflect a service level of
90%. The regular sourcing cost c is set to zero as the unit cost
c is always incurred per unit ordered. Finally, the premium
cost is set to cp = 4 in line with Assumption 1.

Each period, the Lookahead Peak-Shaving policy is opti-
mized over a rolling horizon of H = 10 periods, of which
only the first order is implemented. We minimize the long-
run expected cost of the Lookahead Peak-Shaving policy, the
z-score policy, and the days-of-sales policy by simulating 10
× 10,000 periods. We report the improvement of our Looka-
head Peak-Shaving policy over both benchmark policies over
these 10 long sample paths and include confidence bounds at
the 95% confidence level.

6.3.1 Impact of fluctuating the mean demand
and capacities

We first focus on the impact of fluctuating demand and capac-
ities that we model as follows: The demand in each period t
follows a Gamma distribution with a nonstationary mean per
period 𝜇t and a constant standard deviation 𝜎 = 2. This cor-
responds to a different forecast in each period but identical
forecast errors. We simulate nonstationarity by sampling the
mean from a normal distribution: 𝜇t ∼  (𝜇𝜇, 𝜎

2
𝜇). We fix the

overall mean at 𝜇𝜇 = 10 and vary the standard deviation of
the periodic means 𝜎𝜇 ∈ {0, 1, 2, 3, 4} to simulate different
degrees of nonstationarity. The capacity in each period t fluc-
tuates around the mean demand and is sampled from a normal
distribution: kt ∼  (𝜇t, 𝜎

2
k ). We thus let the capacity fluctu-

ate around the mean demand and vary the standard deviation
of the capacity 𝜎k ∈ {0, 1, 2, 3, 4}.

In Figure 6, we present the performance improvement of
the Lookahead Peak-Shaving policy over our two benchmark
policies: the z-score policy (left panel) and the days-of-sales
policy (right panel). We observe that the Lookahead Peak-
Shaving policy outperforms both policies. While increasing
the degree of nonstationarity does not impact the performance
gap with the z-score policy (from left to right on the left panel)
we do see the performance gap widening compared to the
days-of-sales policy (from left to right on the right panel).
The Lookahead Peak-Shaving policy anticipates changes in
capacities better than both benchmark policies. The perfor-
mance gap clearly increases when capacities fluctuate more
(lines corresponding to larger fluctuations in capacity are
higher in both panels).

We allot the excellent performance of the robust pol-
icy to its ability to better anticipate differences between
future demand and contracted capacity. Consequently, it can
more efficiently decide when to advance orders in order
to avoid future overtime premiums. The opportunities for
leveraging this forward-looking feature increase when the
degree of nonstationarity increases and when capacities fluc-
tuate. We conclude that the robust Lookahead Peak-Shaving
policy seems to perform well in comparison to the bench-
mark policies, also when evaluated against the expected
cost criterion.

6.3.2 Impact of demand correlation and
variability

We also investigate the impact of demand correlation and
variability. We model demand to be correlated accord-
ing to an AR(1) process with correlation coefficient 𝜌 ∈

{−0.5, 0, 0.5}. We let the standard deviation of the demand
vary 𝜎 ∈ {0, 1, 2, 3, 4}. Figure 7 demonstrates the improve-
ment of the Lookahead Peak-Shaving policy over the z-score
policy (left panel) and the days-of-sales policy (right panel).

We first note that the Lookahead Peak-Shaving policy is
optimal when demand is deterministic as in this case the
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Production and Operations Management

F I G U R E 6 We observe that the Lookahead Peak-Shaving policy outperforms the z-score policy (left panel). The performance gap stays similar when
demand fluctuates more but the gap clearly increases for larger fluctuations in the capacity as it better anticipates fluctuating capacity. The Lookahead
Peak-Shaving policy performs better than the days-of-sales policy, with an increasing performance gap both when demand and capacities fluctuate more (right
panel). [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 The Lookahead Peak-Shaving policy performs best when demand is negatively correlated and when demand variance is small. In these
cases, it can better anticipate future capacities and demand. [Color figure can be viewed at wileyonlinelibrary.com]

worst-case bounds are equal and solving the linear program,
as in Equation (4), yields the optimal order quantities. We
observe strong cost improvement of +40% compared to the
z-score and +25% compared to the days-of-sales policy when
the standard deviation is (close to) zero. Increasing the stan-
dard deviation reduces the improvement, as computing the
shifting need becomes gradually less accurate due to an
increased forecast error. Yet, even for large values of the stan-
dard deviation, the Lookahead Peak-Shaving policy yields
good results, especially when demand is negatively corre-
lated. Negative correlation reduces the demand variance in
the next periods such that the Lookahead Peak-Shaving pol-
icy has access to a tighter estimation of future demand. In

conclusion, most benefits arise when demand and capacities
fluctuate and when the demand variance is small, allowing
smarter shifting.

6.4 Performance on a real data set

We also investigate the performance of our policy on real
data of a manufacturer in the consumer-goods industry. Its
shipments between plant and warehouse are outsourced to
dedicated transportation carriers. Daily available transporta-
tion capacities may be exceeded on a given day by resorting
to the freight auction market that comes at a premium.
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16 GIJSBRECHTS ET AL.Production and Operations Management

F I G U R E 8 Pareto plot. Products ranked according to size. Here we can see for the percentage of largest products, how much they contribute to the total
cost. All costs indexed around the Lookahead Peak-Shaving policy. [Color figure can be viewed at wileyonlinelibrary.com]

Our data set contains demand and forecast information of
869 stock keeping units (SKUs) for a time span of approxi-
mately 3 months, covering the fourth quarter of 2019 (hence
no Covid-19 impact). For each SKU we possess the demand
realizations and for each day and SKU, we have the forward-
looking demand forecasts for each of the next 40 days. The
forecast includes both the output of advanced statistical tools
and judgmental adjustments made by demand planners that
interact closely with marketing and sales. Although the fore-
cast accuracy of monthly demand is rather good with forecast
errors (mean average percentage errors) typically below 10%,
the forecasts of daily demands show larger errors as large
key account orders may arrive several days earlier or later
compared to the original forecast. This fits well with the
uncertainty set that can allow for large periodic deviations,
but can force the sum over several periods to have a small
deviation. We split our data set that contains 3 months of
data into a training set to optimize all policy parameters (the
first 1.5 months), and a test set to evaluate the policies (the
subsequent 1.5 months).

We apply the Lookahead Peak-Shaving policy and com-
pare it to the same two benchmark policies as the previous
section. We describe how we retrieved the empirical moments
from the data in detail in Appendix C in the Supporting
Information. Each product has its own pre-dedicated, and
fixed, capacity that we set equal to the mean of each prod-
uct across all periods within the training set. This mimics
how the manufacturer typically negotiates capacity around
(or slightly above) the average daily shipment size while
shipments exceeding this pre-dedicated capacity are made on
the freight auction market. We use the same product-specific
capacities for the evaluation set.

For each SKU, we use the training set to obtain the pol-
icy parameters, that is, Γ and Γ̂ for the robust policy, z1 and
z2 for the z-score policy, and m1 and m2 for the days-of-
sales policy. We optimize the policy parameters per product
individually.

We report the cost performance of the Lookahead Peak-
Shaving policy and both benchmark policies in Figure 8 using
a Pareto plot, where we rank the products from largest vol-
ume to smallest. The numerical parameters we used are as
follows. We keep h = 1 and c = 0 and set the service level
to 90%, corresponding to b = 9. Finally, we set the con-
stant freight auction premium range to cp = 2. We note that
choosing higher premiums only increases the performance
of the Lookahead Peak-Shaving policy. We plot the cumu-
lative cost of all policies, and normalize around the total
cost of the Lookahead Peak-Shaving policy. We see that the
z-score policy increases costs by 6.7%. The days-of-sales pol-
icy performs worst, increasing the cost by more than 40%. We
attribute this to the observations we made on the synthetic
data set: as our data set’s demand fluctuates significantly and
some SKUs’ demand is very intermittent, the days-of-sales
policy lacks flexibility to cope with the demand variability.

We conclude that for the full portfolio the Lookahead Peak-
Shaving policy can clearly outperform the current policy
adopted by the manufacturer.

7 CONCLUSION

We studied the robustly optimal replenishment policy in a
single sourcing backlogging system with volume flexibility.
Sourcing costs are piece-wise linear and convex with an addi-
tional premium incurred once a pre-dedicated threshold is
exceeded. This setting corresponds to various contexts, for
example, factories typically have a dedicated workforce but
can temporarily exceed this capacity by exploiting overtime
labor, companies can choose from several suppliers with indi-
vidual capacity constraints and different unit costs or firms
can book dedicated transportation capacity with an option to
use the transportation spot market. We adopt a robust for-
mulation and prove that the robustly optimal policy has the
same structure as the stochastically optimal policy. The robust
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base-stock levels are characterized by the robustly optimal
base-stock level of the uncapacitated system and an explicit
expression of the shifting need that determines when orders
should be advanced to earlier periods to avoid the over-
time premium. We term the resulting policy the Lookahead
Peak-Shaving policy as it peak shaves orders from future
peak-demand periods to the current periods. We compare our
policy against two benchmark heuristics and find that our pol-
icy performs well, also when evaluated against the expected
costs; especially in settings characterized by high fluctuations
of the periodic capacity, of the expected demand, or of both.
We affirmed these findings by applying our model on data of
a manufacturer. The robust policy saves 6.7% compared to
the policy currently used by the manufacturer. In conclusion,
our closed-form expressions facilitate adoption in practice,
they generate intuitive insights for managers into the dynam-
ics of the problem and their application on real data results in
substantial savings.
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