22 research outputs found

    Mapping Europe into local climate zones

    Get PDF
    Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives

    Sky View Factor footprints for urban climate modeling

    Get PDF
    Urban morphology is an important multidimensional variable to consider in climate modeling and observations, because it significantly drives the local and micro-scale climatic variability in cities. Urban form can be described through urban canopy parameters (UCPs) that resolve the spatial heterogeneity of cities by specifying the 3-dimensional geometry, arrangement, and materials of urban features. The sky view factor (SVF) is a dimension-reduced UCP capturing 3-dimensional form through horizon limitation fractions. SVF has become a popular metric to parameterize urban morphology, but current approaches are difficult to scale up to global coverage. This study introduces a Big-Data approach to calculate SVFs for urban areas from Google Street View (GSV). 90-degree field-of-view GSV photos are retrieved and converted into hemispherical views through equiangular projection. The fisheyes are segmented into sky and non-sky pixels using image processing, and the SVF is calculated using an annulus method. Results are compared to SVFs retrieved from GSV images segmented using deep learning. SVF footprints are presented for urban areas around the world tallying 15,938,172 GSV locations. Two use cases are introduced: (1) an evaluation of a Google Earth Engine classified Local Climate Zone map for Singapore; (2) hourly sun duration maps for New York and San Francisco

    Detection of a stroke volume decrease by machine-learning algorithms based on thoracic bioimpedance in experimental hypovolaemia

    Get PDF
    Compensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements. Transthoracic echo served as reference for SVI assessment (SVI-TTE). In 30 healthy male volunteers, central hypovolaemia was simulated using a lower body negative pressure (LBNP) chamber. A machine-learning algorithm based on variables of EC was designed. During LBNP, SVI-TTE declined consecutively, whereas the vital signs (arterial pressures and heart rate) remained within normal ranges. Compared to heart rate (AUC: 0.83 (95% CI: 0.73–0.87)) and systolic arterial pressure (AUC: 0.82 (95% CI: 0.74–0.85)), a model integrating EC variables (AUC: 0.91 (0.83–0.94)) showed a superior ability to predict a decrease in SVI-TTE ≥ 20% (p = 0.013 compared to heart rate, and p = 0.002 compared to systolic blood pressure). Simulated central hypovolaemia was related to a substantial decline in SVI-TTE but only minor changes in vital signs. A model of EC variables based on machine-learning algorithms showed high predictive power to detect a relevant decrease in SVI and may provide an automated, non-invasive method to indicate hypovolaemia and compensated shock

    Osvrti na publikacije

    Get PDF
    The World Urban Database and Access Portal Tools (WUDAPT) is a community initiative to collect worldwide data on urban form (i.e., morphology, materials) and function (i.e., use and metabolism). This is achieved through crowdsourcing, which we define here as the collection of data by a bounded crowd, composed of students. In this process, training data for the classification of urban structures into Local Climate Zones (LCZ) are obtained, which are, like most volunteered geographic information initiatives, of unknown quality. In this study, we investigated the quality of 94 crowdsourced training datasets for ten cities, generated by 119 students from six universities. The results showed large discrepancies and the resulting LCZ maps were mostly of poor to moderate quality. This was due to general difficulties in the human interpretation of the (urban) landscape and in the understanding of the LCZ scheme. However, the quality of the LCZ maps improved with the number of training data revisions. As evidence for the wisdom of the crowd, improvements of up to 20% in overall accuracy were found when multiple training datasets were used together to create a single LCZ map. This improvement was greatest for small training datasets, saturating at about ten to fifteen sets

    Sky View Factor footprints for urban climate modeling

    No full text
    status: publishe

    Mapping Europe into local climate zones

    No full text
    Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives.status: publishe

    European LCZ map

    No full text
    A European Local Climate Zone map at a 100 m spatial resolution, derived from multiple earth observation datasets and expert LCZ class labels. There are 10 urban LCZ types, each associated with a set of relevant variables such that the map represent a valuable database of urban properties
    corecore