69 research outputs found
(Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and Îł-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes
Analyse des mécanismes de défense de la carotte (Daucus carota) face au champignon pathogÚne Alternaria dauci, responsable de l'alternariose ou brûlure foliaire
Carrot is the most widely consumed root vegetable worldwide. Carrot production is strongly impacted by various diseases, including Alternaria leaf blight. This disease, caused by the necrotrophic fungus Alternaria dauci, is regarded as the most prejudicial carrot foliar disease. An important goal for carrot breeders is the enhancement of cultivars resistance towards strong and durable levels. This enhancement implies cumulating different partial resistances in one genotype. Understanding the mechanisms of Alternaria leaf blight partial resistance will help developing such strategies. In order to address this question, we developed a three pronged strategy. First, we explored the implication of carrot defense metabolites in partial resistance towards A. dauci. We showed that falcarindiol had a stronger inhibiting effect on fungal growth than 6-methoxymellein (6-MM). Moreover, there is more falcarindiol, and 6-MM accumulates more strongly after inoculation in the resistant genotype (Bolero) than in the susceptible one (Presto). These defense molecules could slow down the fungus development and thus take part in resistance. In one second part, we explored plant cell resistance towards fungal metabolites. This resistance, tested in liquid cultures amongst several cultivars (cell viability, somatic embryogenesis and enzymatic activity), shows a good correlation with the resistance levels of whole plants towards the fungus. Disease resistant genotypes showed moderate (K3) to strong (I2) fungal metabolites resistance. Thus, carrot Alternaria blight resistance mechanisms seem to include toxin resistances. In the final chapter, we explored the role of defense mechanisms in carrot partial resistance. Our first results indicate the implication of the jasmonates pathway, in particular through the overexpression of the PR4 gene in the resistant genotype K3, but not I2. In addition we explored polymorphic sites (SNP) in the sequences of four defense genes. Two genes (PAL, GLP) have a sequence polymorphism between genotypes. In the case of GLP, the SNPs highlighted allow to differentiate a susceptible genotype (H1) from the K3 genotype. During this work, we uncovered different aspect of carrot partial resistance. In particular we can hypothesize that two genotypes (I2 and K3), reach an equivalent partial resistance level, through two quite distinct mechanisms. Beyond the use for a faster breeding of carrot for resistance, these results have more basic implications, as partial resistance mechanisms are still poorly understood, including model plant pathogen interactions.La carotte, lĂ©gume racine le plus consommĂ© au monde, voit sa production fortement impactĂ©e par diverses maladies dont la brĂ»lure foliaire. Cette maladie, provoquĂ©e par le champignon nĂ©crotrophe Alternaria dauci, est considĂ©rĂ©e comme la plus prĂ©judiciable des maladies foliaires de la carotte. DĂ©velopper des variĂ©tĂ©s prĂ©sentant un niveau de rĂ©sistance fort et durable Ă cette maladie est l'un des objectifs principaux des sĂ©lectionneurs, notamment en cumulant diffĂ©rentes rĂ©sistances partielles dans un mĂȘme gĂ©notype. Afin d'optimiser un tel cumul, il est nĂ©cessaire de comprendre les mĂ©canismes associĂ©s Ă ces rĂ©sistances. Dans la premiĂšre partie de cette thĂšse, nous avons Ă©tudiĂ© l'implication de mĂ©tabolites de dĂ©fense produits par la carotte dans la rĂ©sistance partielle de la plante Ă A. dauci. Nous avons montrĂ© un effet inhibiteur de la 6- mĂ©thoxymellĂ©ine (6-MM) et du falcarindiol, sur le dĂ©veloppement du champignon. Cet effet est plus important avec le falcarindiol. De plus, la teneur en falcarindiol est supĂ©rieure chez le gĂ©notype rĂ©sistant (BolĂ©ro) en comparaison avec le gĂ©notype sensible (Presto) et, suite Ă l'inoculation de la plante par A. dauci, la 6-MM s'accumule de façon plus importante dans les feuilles du gĂ©notype rĂ©sistant. Ces molĂ©cules de dĂ©fense pourraient ralentir le dĂ©veloppement du champignon et participer ainsi Ă la rĂ©sistance. Dans une seconde partie, nous nous sommes intĂ©ressĂ©s Ă l'effet de mĂ©tabolites toxiques produits par le champignon sur des cultures cellulaires de carotte. Nos rĂ©sultats montrent une corrĂ©lation entre le comportement des cellules traitĂ©es (viabilitĂ© cellulaire, embryogenĂšse somatique et activitĂ© enzymatique) et la sensibilitĂ©/rĂ©sistance des gĂ©notypes Ă©valuĂ©e au niveau de la plante entiĂšre. Parmi les gĂ©notypes les plus rĂ©sistants au champignon, le gĂ©notype I2 rĂ©siste mieux Ă l'application d'extraits fongiques que le gĂ©notype K3. Ainsi, la rĂ©sistance partielle de la carotte face Ă A. dauci semble inclure des rĂ©sistances aux toxines. Dans le dernier chapitre, nous avons recherchĂ© un lien entre la rĂ©sistance partielle et les mĂ©canismes de dĂ©fense de la plante, en particulier ceux liĂ©s Ă la voie des jasmonates. Nos premiers rĂ©sultats montrent la surexpression du gĂšne PR4 chez le gĂ©notype rĂ©sistant K3, comparativement aux autres gĂ©notypes, y compris I2. Nous avons par ailleurs recherchĂ© des sites polymorphes (SNP) dans les sĂ©quences de quatre gĂšnes de dĂ©fense. Deux gĂšnes (PAL, GLP) prĂ©sentent un polymorphisme de sĂ©quence entre gĂ©notypes. Dans le cas de GLP, les SNPs mis en Ă©vidence permettent de diffĂ©rencier un gĂ©notype sensible (H1) du gĂ©notype K3. L'ensemble de ces rĂ©sultats semble indiquer la prĂ©sence d'une diversitĂ© des modalitĂ©s de la rĂ©sistance partielle de la carotte face Ă A. dauci. Ainsi, la rĂ©sistance aux toxines semble jouer un rĂŽle plus important chez I2 que chez K3. Inversement, la rĂ©sistance de K3, et non celle de I2, semble impliquer la voie des jasmonates. AudelĂ de leur application en amĂ©lioration, ces travaux jettent une lueur sur les mĂ©canismes de la rĂ©sistance partielle, mĂ©canismes encore trĂšs peu connus, mĂȘme parmi les interactions modĂšles
Analyse des mécanismes de défense de la carotte (Daucus carota) face au champignon pathogÚne Alternaria dauci, responsable de l'alternariose ou brûlure foliaire
La carotte, lĂ©gume racine le plus consommĂ© au monde, voit sa production fortement impactĂ©e par diverses maladies dont la brĂ»lure foliaire. Cette maladie, provoquĂ©e par le champignon nĂ©crotrophe Alternaria dauci, est considĂ©rĂ©e comme la plus prĂ©judiciable des maladies foliaires de la carotte. DĂ©velopper des variĂ©tĂ©s prĂ©sentant un niveau de rĂ©sistance fort et durable Ă cette maladie est l'un des objectifs principaux des sĂ©lectionneurs, notamment en cumulant diffĂ©rentes rĂ©sistances partielles dans un mĂȘme gĂ©notype. Afin d'optimiser un tel cumul, il est nĂ©cessaire de comprendre les mĂ©canismes associĂ©s Ă ces rĂ©sistances. Dans la premiĂšre partie de cette thĂšse, nous avons Ă©tudiĂ© l'implication de mĂ©tabolites de dĂ©fense produits par la carotte dans la rĂ©sistance partielle de la plante Ă A. dauci. Nous avons montrĂ© un effet inhibiteur de la 6- mĂ©thoxymellĂ©ine (6-MM) et du falcarindiol, sur le dĂ©veloppement du champignon. Cet effet est plus important avec le falcarindiol. De plus, la teneur en falcarindiol est supĂ©rieure chez le gĂ©notype rĂ©sistant (BolĂ©ro) en comparaison avec le gĂ©notype sensible (Presto) et, suite Ă l'inoculation de la plante par A. dauci, la 6-MM s'accumule de façon plus importante dans les feuilles du gĂ©notype rĂ©sistant. Ces molĂ©cules de dĂ©fense pourraient ralentir le dĂ©veloppement du champignon et participer ainsi Ă la rĂ©sistance. Dans une seconde partie, nous nous sommes intĂ©ressĂ©s Ă l'effet de mĂ©tabolites toxiques produits par le champignon sur des cultures cellulaires de carotte. Nos rĂ©sultats montrent une corrĂ©lation entre le comportement des cellules traitĂ©es (viabilitĂ© cellulaire, embryogenĂšse somatique et activitĂ© enzymatique) et la sensibilitĂ©/rĂ©sistance des gĂ©notypes Ă©valuĂ©e au niveau de la plante entiĂšre. Parmi les gĂ©notypes les plus rĂ©sistants au champignon, le gĂ©notype I2 rĂ©siste mieux Ă l'application d'extraits fongiques que le gĂ©notype K3. Ainsi, la rĂ©sistance partielle de la carotte face Ă A. dauci semble inclure des rĂ©sistances aux toxines. Dans le dernier chapitre, nous avons recherchĂ© un lien entre la rĂ©sistance partielle et les mĂ©canismes de dĂ©fense de la plante, en particulier ceux liĂ©s Ă la voie des jasmonates. Nos premiers rĂ©sultats montrent la surexpression du gĂšne PR4 chez le gĂ©notype rĂ©sistant K3, comparativement aux autres gĂ©notypes, y compris I2. Nous avons par ailleurs recherchĂ© des sites polymorphes (SNP) dans les sĂ©quences de quatre gĂšnes de dĂ©fense. Deux gĂšnes (PAL, GLP) prĂ©sentent un polymorphisme de sĂ©quence entre gĂ©notypes. Dans le cas de GLP, les SNPs mis en Ă©vidence permettent de diffĂ©rencier un gĂ©notype sensible (H1) du gĂ©notype K3. L'ensemble de ces rĂ©sultats semble indiquer la prĂ©sence d'une diversitĂ© des modalitĂ©s de la rĂ©sistance partielle de la carotte face Ă A. dauci. Ainsi, la rĂ©sistance aux toxines semble jouer un rĂŽle plus important chez I2 que chez K3. Inversement, la rĂ©sistance de K3, et non celle de I2, semble impliquer la voie des jasmonates. AudelĂ de leur application en amĂ©lioration, ces travaux jettent une lueur sur les mĂ©canismes de la rĂ©sistance partielle, mĂ©canismes encore trĂšs peu connus, mĂȘme parmi les interactions modĂšles.Carrot is the most widely consumed root vegetable worldwide. Carrot production is strongly impacted by various diseases, including Alternaria leaf blight. This disease, caused by the necrotrophic fungus Alternaria dauci, is regarded as the most prejudicial carrot foliar disease. An important goal for carrot breeders is the enhancement of cultivars resistance towards strong and durable levels. This enhancement implies cumulating different partial resistances in one genotype. Understanding the mechanisms of Alternaria leaf blight partial resistance will help developing such strategies. In order to address this question, we developed a three pronged strategy. First, we explored the implication of carrot defense metabolites in partial resistance towards A. dauci. We showed that falcarindiol had a stronger inhibiting effect on fungal growth than 6-methoxymellein (6-MM). Moreover, there is more falcarindiol, and 6-MM accumulates more strongly after inoculation in the resistant genotype (Bolero) than in the susceptible one (Presto). These defense molecules could slow down the fungus development and thus take part in resistance. In one second part, we explored plant cell resistance towards fungal metabolites. This resistance, tested in liquid cultures amongst several cultivars (cell viability, somatic embryogenesis and enzymatic activity), shows a good correlation with the resistance levels of whole plants towards the fungus. Disease resistant genotypes showed moderate (K3) to strong (I2) fungal metabolites resistance. Thus, carrot Alternaria blight resistance mechanisms seem to include toxin resistances. In the final chapter, we explored the role of defense mechanisms in carrot partial resistance. Our first results indicate the implication of the jasmonates pathway, in particular through the overexpression of the PR4 gene in the resistant genotype K3, but not I2. In addition we explored polymorphic sites (SNP) in the sequences of four defense genes. Two genes (PAL, GLP) have a sequence polymorphism between genotypes. In the case of GLP, the SNPs highlighted allow to differentiate a susceptible genotype (H1) from the K3 genotype. During this work, we uncovered different aspect of carrot partial resistance. In particular we can hypothesize that two genotypes (I2 and K3), reach an equivalent partial resistance level, through two quite distinct mechanisms. Beyond the use for a faster breeding of carrot for resistance, these results have more basic implications, as partial resistance mechanisms are still poorly understood, including model plant pathogen interactions.ANGERS-BU Lettres et Sciences (490072106) / SudocSudocFranceF
Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges
Correspondance: [email protected] audienceOxidative degradation of lipids, especially that induced by reactive oxygen species (ROS), leads to quality deterioration of foods and cosmetics and could have harmful effects on health. Currently, a very promising way to overcome this is to use vegetable antioxidants for nutritional, therapeutic or food quality preservation purposes. A major challenge is to develop tools to assess the antioxidant capacity and real efficacy of these molecules. Many rapid in vitro tests are now available, but they are often performed in dissimilar conditions and different properties are thus frequently measured. The so-called âdirectâ methods, which use oxidizable substrates, seem to be the only ones capable of measuring real antioxidant power. Some oxidizable substrates correspond to molecules or natural extracts exhibiting biological activity, such as lipids, proteins or nucleic acids, while others are model substrates that are not encountered in biological systems or foods. Only lipid oxidation and direct methods using lipid-like substrates will be discussed in this review. The main mechanisms of autoxidation and antioxidation are recapitulated, then the four components of a standard test (oxidizable substrate, medium, oxidation conditions and antioxidant) applied to a single antioxidant or complex mixtures are dealt with successively. The study is focused particularly on model lipids, but also on dietary and biological lipids isolated from their natural environment, including lipoproteins and phospholipidic membranes. Then the advantages and drawbacks of existing methods and new approaches are compared according to the context. Finally, recent trends based on the chemometric strategy are introduced as a highly promising prospect for harmonizing in vitro method
The physico-chemical basis of phenolic antioxidant activity
Predicting antioxidant activity in a given system is undoubtedly theâholy grailâ of the academic and industrial research, especially for phenolics which are the most abundant and widespread antioxidants on earth. However, this tour de force necessitates knowing the physicochemical traits that govern the antioxidant activity, which is still out of reach. From a chemical standpoint, phenolic antioxidants are able to give electrons to reactive species such as free radicals (among others). This is the basis of their antioxidant properties that make the hype on polyphenols in the scientific literature. However, do we know exactly what make them poor or excellent antioxidants? This mini-review will discuss the complexity of factors determining the antioxidant activity of phenolics. Above all, we will ask some crucial questions nobody usually asks. Are reducers necessarily antioxidants? When studying the quantitative structure-activity relationship, do we take into account the antioxidant activity of the oxidation product(s) of phenolics? How can we predict antioxidant activity in natural multiphasic systems if most of the studies come from artificial homogenous solutions? Finally, we think that scientists are too focused on reactivity, whereas the physico-chemistry behind phenolic antioxidants may be rather the key to understand the hither to unknown antioxidant activity determinants
- âŠ