55 research outputs found

    HIV Spending as a Share of Total Health Expenditure: An Analysis of Regional Variation in a Multi-Country Study

    Get PDF
    Background: HIV has devastated numerous countries in sub-Saharan Africa and is a dominant health force in many other parts of the world. Its undeniable importance is reflected in the establishment of Millennium Development Goal No. 6. Unprecedented amounts of funding have been committed and disbursed over the past two decades. Many have argued that this enormous influx of funding has been detrimental to building stronger health systems in recipient countries. This paper examines the funding share for HIV measured against the total funding for health. Methodology/Principal Findings: A descriptive analysis of HIV and health expenditures in 2007 from 65 countries was conducted. Comparable data from individual countries was used by applying a consistent definition for HIV expenditures and total health expenditures from NHAs to align them with National AIDS Assessment Reports. In 2007, the total public and international expenditure in LMICs for HIV was 1.6 percent of the total spending on health, while the share in SSA was 19.4 percent. HIV prevalence was six-fold higher in SSA than the next highest region and it is the only region whose share of HIV spending exceeded the burden of HIV DALYs. Conclusions/Significance: The share of HIV spending across the 65 countries was quite moderate considering that the estimated share of deaths attributable to HIV stood at 3.8 percent and DALYs at 4.4 percent. Several high spending countries are using a large share of their total health spending for HIV health, but these countries are the exception rathe

    Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling

    Get PDF
    AIM: To estimate the key transmission parameters associated with an outbreak of pandemic influenza in an institutional setting (New Zealand 1918). METHODS: Historical morbidity and mortality data were obtained from the report of the medical officer for a large military camp. A susceptible-exposed-infectious-recovered epidemiological model was solved numerically to find a range of best-fit estimates for key epidemic parameters and an incidence curve. Mortality data were subsequently modelled by performing a convolution of incidence distribution with a best-fit incidence-mortality lag distribution. RESULTS: Basic reproduction number (R(0)) values for three possible scenarios ranged between 1.3, and 3.1, and corresponding average latent period and infectious period estimates ranged between 0.7 and 1.3 days, and 0.2 and 0.3 days respectively. The mean and median best-estimate incidence-mortality lag periods were 6.9 and 6.6 days respectively. This delay is consistent with secondary bacterial pneumonia being a relatively important cause of death in this predominantly young male population. CONCLUSION: These R(0 )estimates are broadly consistent with others made for the 1918 influenza pandemic and are not particularly large relative to some other infectious diseases. This finding suggests that if a novel influenza strain of similar virulence emerged then it could potentially be controlled through the prompt use of major public health measures

    Modelling the Evolution and Spread of HIV Immune Escape Mutants

    Get PDF
    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    It’s Not Only Rents: Explaining the Persistence and Change of Neopatrimonialism in Indonesia

    Full text link

    Exact analytical expressions for the final epidemic size of an SIR model on small networks

    No full text
    We investigate the dynamics of a susceptible infected recovered (SIR) epidemic model on small networks with different topologies, as a stepping stone to determining how the structure of a contact network impacts the transmission of infection through a population. For an SIR model on a network of NN nodes, there are 3N3^N configurations that the network can be in. To simplify the analysis, we group the states together based on the number of nodes in each infection state and the symmetries of the network. We derive analytical expressions for the final epidemic size of an SIR model on small networks composed of three or four nodes with different topological structures. Differential equations which describe the transition of the network between states are also derived and solved numerically to confirm our analysis. A stochastic SIR model is numerically simulated on each of the small networks with the same initial conditions and infection parameters to confirm our results independently. We show that the structure of the network, degree of the initial infectious node, number of initial infectious nodes and the transmission rate all significantly impact the final epidemic size of an SIR model on small networks. doi:10.1017/S144618111600004

    Modelling the evolution and spread of HIV immune escape mutants.

    No full text
    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level

    Modeling infectious disease dynamics in the complex landscape of global health.

    Get PDF
    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health
    corecore