52 research outputs found

    Tooth bioengineering from single cell suspensions

    Get PDF
    Recent advances in bioengineering and biomaterials, along with knowledge deriving from the fields of developmental biology and stem cell research, have rendered feasible functional replacement of full organs. Here, we describe the methodology for bioengineering a tooth, starting from embryonic epithelial and mesenchymal single cell suspensions. In addition, we describe the subsequent steps of processing this minute structure for use in applications such as histological examination, immunofluorescence and in situ hybridisation. This methodology can be used for any minute structure that needs to be used in paraffin blocks.•Detailed methodology for reproducible and reliable results•Extra step to ensure single cell populations•Subsequent minute structure processing for histological analysisPeer reviewe

    Unilateral zebrafish corneal injury induces bilateral cell plasticity supporting wound closure

    Get PDF
    The cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.Peer reviewe

    Zebrafish cornea formation and homeostasis reveal a slow maturation process, similarly to terrestrial vertebrates' corneas

    Get PDF
    Corneal blindness is the fourth leading cause of blindness worldwide. The superficial position of cornea on the eye makes this tissue prone to environmental aggressions, which can have a strong impact on sight. While most corneal pathology studies utilize terrestrial models, the knowledge on zebrafish cornea is too scarce to comprehend its strategy for the maintenance of a clear sight in aquatic environment. In this study, we deciphered the cellular and molecular events during corneal formation and maturation in zebrafish. After describing the morphological changes taking place from 3 days post fertilization (dpf) to adulthood, we analyzed cell proliferation. We showed that label retaining cells appear around 14 to 21dpf. Our cell proliferation study, combined to the study of Pax6a and krtt1c19e expression, demonstrate a long maturation process, ending after 45dpf. This maturation ends with a solid patterning of corneal innervation. Finally, we demonstrated that corneal wounding leads to an intense dedifferentiation, leading to the recapitulation of corneal formation and maturation, via a plasticity period. Altogether, our study deciphers the maturation steps of an aquatic cornea. These findings demonstrate the conservation of corneal formation, maturation and wound healing process in aquatic and terrestrial organisms, and they will enhance the use of zebrafish as model for corneal physiology studies.Peer reviewe

    Dental Epithelial Stem Cells Express the Developmental Regulator Meis1

    Get PDF
    MEIS1 is a key developmental regulator of several organs and participates in stem cell maintenance in different niches. However, despite the murine continuously growing incisor being a well described model for the study of adult stem cells, Meis1 has not been investigated in a dental context. Here, we uncover that Meis1 expression in the tooth is confined to the epithelial compartment. Its expression arises during morphogenesis and becomes restricted to the mouse incisor epithelial stem cell niche, the labial cervical loop. Meis1 is specifically expressed by Sox2(+) stem cells, which give rise to all dental epithelial cell lineages. Also, we have found that Meis1 in the incisor is coexpressed with potential binding partner Pbx1 during both embryonic and adult stages. Interestingly, Meis2 is present in different areas of the forming tooth and it is not expressed by dental epithelial stem cells, suggesting different roles for these two largely homologous genes. Additionally, we have established the expression patterns of Meis1 and Meis2 during tongue, hair, salivary gland and palate formation. Finally, analysis of Meis1-null allele mice indicated that, similarly, to SOX2, MEIS1 is not essential for tooth initiation, but might have a role during adult incisor renewal.Peer reviewe

    Sox21 Regulates Anapc10 Expression and Determines the Fate of Ectodermal Organ

    Get PDF
    The transcription factor Sox21 is expressed in the epithelium of developing teeth. The present study aimed to determine the role of Sox21 in tooth development. We found that disruption of Sox21 caused severe enamel hypoplasia, regional osteoporosis, and ectopic hair formation in the gingiva in Sox21 knockout incisors. Differentiation markers were lost in ameloblasts, which formed hair follicles expressing hair keratins. Molecular analysis and chromatin immunoprecipitation sequencing indicated that Sox21 regulated Anapc10, which recognizes substrates for ubiquitination-mediated degradation, and determined dental-epithelial versus hair follicle cell fate. Disruption of either Sox21 or Anapc10 induced Smad3 expression, accelerated TGF-beta 1-induced promotion of epithelial-to-mesenchymal transition (EMT), and resulted in E-cadherin degradation via Skp2. We conclude that Sox21 disruption in the dental epithelium leads to the formation of a unique microenvironment promoting hair formation and that Sox21 controls dental epithelial differentiation and enamel formation by inhibiting EMT via Anapc10.Peer reviewe
    • …
    corecore