241 research outputs found

    A Method to Allow Software Detection of Multiple Different Chassis Types That Use a Common PCA

    Get PDF
    Many computer system designs today implement a common printed circuit board assembly that is used in more than one mechanical chassis. This invention describes a design method that allows software to identify in which chassis the PCA has been installed. The system software is able to determine the chassis type be detecting a set of mounting screw connections that are unique for each particular chassis

    Identifying clinically useful biomarkers in neurodegenerative disease through a collaborative approach: the NeuroToolKit

    Get PDF
    BACKGROUND: Alzheimer’s disease (AD) is a complex and heterogeneous disease, which requires reliable biomarkers for diagnosis and monitoring disease activity. Preanalytical protocol and technical variability associated with biomarker immunoassays makes comparability of biomarker data across multiple cohorts difficult. This study aimed to compare cerebrospinal fluid (CSF) biomarker results across independent cohorts, including participants spanning the AD continuum. METHODS: Measured on the NeuroToolKit (NTK) prototype panel of immunoassays, 12 CSF biomarkers were evaluated from three cohorts (ALFA+, Wisconsin, and Abby/Blaze). A correction factor was applied to biomarkers found to be affected by preanalytical procedures (amyloid-β1–42, amyloid-β1–40, and alpha-synuclein), and results between cohorts for each disease stage were compared. The relationship between CSF biomarker concentration and cognitive scores was evaluated. RESULTS: Biomarker distributions were comparable across cohorts following correction. Correlations of biomarker values were consistent across cohorts, regardless of disease stage. Disease stage differentiation was highest for neurofilament light (NfL), phosphorylated tau, and total tau, regardless of the cohort. Correlation between biomarker concentration and cognitive scores was comparable across cohorts, and strongest for NfL, chitinase-3-like protein-1 (YKL40), and glial fibrillary acidic protein. DISCUSSION: The precision of the NTK enables merging of biomarker datasets, after correction for preanalytical confounders. Assessment of multiple cohorts is crucial to increase power in future studies into AD pathogenesis

    Extremes of Gaussian random fields with regularly varying dependence structure

    Get PDF
    Let be a centered Gaussian random field with variance function sigma (2)(ai...) that attains its maximum at the unique point , and let . For a compact subset of a"e, the current literature explains the asymptotic tail behaviour of under some regularity conditions including that 1 - sigma(t) has a polynomial decrease to 0 as t -> t (0). In this contribution we consider more general case that 1 - sigma(t) is regularly varying at t (0). We extend our analysis to Gaussian random fields defined on some compact set , deriving the exact tail asymptotics of for the class of Gaussian random fields with variance and correlation functions being regularly varying at t (0). A crucial novel element is the analysis of families of Gaussian random fields that do not possess locally additive dependence structures, which leads to qualitatively new types of asymptotics

    Effect of training and sudden detraining on the patellar tendon and its enthesis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different conditions may alter tendon characteristics. Clinical evidence suggests that tendon injuries are more frequent in athletes that change type, intensity and duration of training. Aim of the study was the assessment of training and especially detraining on the patellar tendon (PT) and its enthesis.</p> <p>Methods</p> <p>27 male adult Sprague-Dawley rats were divided into 3 groups: 20 rats were trained on a treadmill for 10 weeks. Of these, 10 rats were euthanized immediately after training (trained group), and 10 were caged without exercise for 4 weeks before being euthanized (de-trained group). The remaining 7 rats were used as controls (untrained rats). PT insertion, structure (collagen fiber organization and proteoglycan, PG, content), PT thickness, enthesis area, and subchondral bone volume at the enthesis were measured by histomorphometry and microtomography.</p> <p>Results</p> <p>Both PG content and collagen fiber organization were significantly lower in untrained and detrained animals than in trained ones (<it>p </it>< 0.05 and <it>p </it>< 0.0001). In the detrained group, fiber organization and PG content were worse than that of the untrained groups and the untrained group showed a significantly higher score than the detrained group (<it>p </it>< 0.05). In the trained group, the PT was significantly thicker than in untrained group (<it>p </it>< 0.05). No significant differences in the enthesis area and subchondral bone volume among the three groups were seen.</p> <p>Conclusions</p> <p>Moderate exercise exerts a protective effect on the PT structure while sudden discontinuation of physical activity has a negative effect on tendons. The present results suggest that after a period of sudden de-training (such as after an injury) physical activity should be restarted with caution and with appropriate rehabilitation programs.</p

    Voluntary exercise inhibits intestinal tumorigenesis in ApcMin/+ mice and azoxymethane/dextran sulfate sodium-treated mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies suggest that physical activity reduces the risk of colon cancer in humans. Results from animal studies, however, are inconclusive. The present study investigated the effects of voluntary exercise on intestinal tumor formation in two different animal models, <it>Apc</it><sup>Min/+ </sup>mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice.</p> <p>Methods</p> <p>In Experiments 1 and 2, five-week old female <it>Apc</it><sup>Min/+ </sup>mice were either housed in regular cages or cages equipped with a running wheel for 6 weeks (for mice maintained on the AIN93G diet; Experiment 1) or 9 weeks (for mice on a high-fat diet; Experiment 2). In Experiment 3, male CF-1 mice at 6 weeks of age were given a dose of AOM (10 mg/kg body weight, i.p.) and, 12 days later, 1.5% DSS in drinking fluid for 1 week. The mice were then maintained on a high-fat diet and housed in regular cages or cages equipped with a running wheel for 16 weeks.</p> <p>Results</p> <p>In the <it>Apc</it><sup>Min/+ </sup>mice maintained on either the AIN93G or the high-fat diet, voluntary exercise decreased the number of small intestinal tumors. In the AOM/DSS-treated mice maintained on a high-fat diet, voluntary exercise also decreased the number of colon tumors. In <it>Apc</it><sup>Min/+ </sup>mice, voluntary exercise decreased the ratio of serum insulin like growth factor (IGF)-1 to IGF binding protein (BP)-3 levels. It also decreased prostaglandin E<sub>2 </sub>and nuclear ��-catenin levels, but increased E-cadherin levels in the tumors.</p> <p>Conclusion</p> <p>These results indicate hat voluntary exercise inhibited intestinal tumorigenesis in <it>Apc</it><sup>Min/+ </sup>mice and AOM/DSS-treated mice, and the inhibitory effect is associated with decreased IGF-1/IGFBP-3 ratio, aberrant β-catenin signaling, and arachidonic acid metabolism.</p

    Inhibitors of inflammation and endogenous surfactant pool size as modulators of lung injury with initiation of ventilation in preterm sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased pro-inflammatory cytokines in tracheal aspirates correlate with the development of BPD in preterm infants. Ventilation of preterm lambs increases pro-inflammatory cytokines and causes lung inflammation.</p> <p>Objective</p> <p>We tested the hypothesis that selective inhibitors of pro-inflammatory signaling would decrease lung inflammation induced by ventilation in preterm newborn lambs. We also examined if the variability in injury response was explained by variations in the endogenous surfactant pool size.</p> <p>Methods</p> <p>Date-mated preterm lambs (n = 28) were operatively delivered and mechanically ventilated to cause lung injury (tidal volume escalation to 15 mL/kg by 15 min at age). The lambs then were ventilated with 8 mL/kg tidal volume for 1 h 45 min. Groups of animals randomly received specific inhibitors for IL-8, IL-1, or NF-κB. Unventilated lambs (n = 7) were the controls. Bronchoalveolar lavage fluid (BALF) and lung samples were used to quantify inflammation. Saturated phosphatidylcholine (Sat PC) was measured in BALF fluid and the data were stratified based on a level of 5 μmol/kg (~8 mg/kg surfactant).</p> <p>Results</p> <p>The inhibitors did not decrease the cytokine levels or inflammatory response. The inflammation increased as Sat PC pool size in BALF decreased. Ventilated lambs with a Sat PC level > 5 μmol/kg had significantly decreased markers of injury and lung inflammation compared with those lambs with < 5 μmol/kg.</p> <p>Conclusion</p> <p>Lung injury caused by high tidal volumes at birth were decreased when endogenous surfactant pool sizes were larger. Attempts to decrease inflammation by blocking IL-8, IL-1 or NF-κB were unsuccessful.</p

    Mid-portion Achilles tendinopathy: why painful? An evidence-based philosophy

    Get PDF
    Chronic mid-portion Achilles tendinopathy is generally difficult to treat as the background to the pain mechanisms has not yet been clarified. A wide range of conservative and surgical treatment options are available. Most address intratendinous degenerative changes when present, as it is believed that these changes are responsible for the symptoms. Since up to 34% of asymptomatic tendons show histopathological changes, we believe that the tendon proper is not the cause of pain in the majority of patients. Chronic painful tendons show the ingrowth of sensory and sympathetic nerves from the paratenon with release of nociceptive substances. Denervating the Achilles tendon by release of the paratenon is sufficient to cause pain relief in the majority of patients. This type of treatment has the additional advantage that it is associated with a shorter recovery time when compared with treatment options that address the tendon itself. An evidence-based philosophy on the cause of pain in chronic mid-portion Achilles tendinopathy is presented

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
    corecore