80 research outputs found

    3MRC Cognition and Brain Sciences Unit

    Get PDF
    Acoustic sequences such as speech and music are generally perceived as coherent auditory “streams,” which can be individually attended to and followed over time. Although the psychophysical stimulus parameters governing this “auditory streaming ” are well established, the brain mechanisms underlying the formation of auditory streams remain largely unknown. In particular, an essential feature of the phenomenon, which corresponds to the fact that the segregation of sounds into streams typically takes several seconds to build up, remains unexplained. Here, we show that this and other major features of auditorystream formation measured in humans using alternating-tone sequences can be quantitatively accounted for based on single-unit responses recorded in the primary auditory cortex (A1) of awake rhesus monkeys listening to the same sound sequences

    Neural Correlates of Auditory Perceptual Awareness under Informational Masking

    Get PDF
    Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this “informational masking” are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50–250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex

    Effect of stimulus type and pitch salience on pitch-sequence processing

    Get PDF
    Using a same-different discrimination task, it has been shown that discrimination performance for sequences of complex tones varying just detectably in pitch is less dependent on sequence length (1, 2, or 4 elements) when the tones contain resolved harmonics than when they do not [Cousineau, Demany, and Pessnitzer (2009). J. Acoust. Soc. Am. 126, 3179-3187]. This effect had been attributed to the activation of automatic frequency-shift detectors (FSDs) by the shifts in resolved harmonics. The present study provides evidence against this hypothesis by showing that the sequence-processing advantage found for complex tones with resolved harmonics is not found for pure tones or other sounds supposed to activate FSDs (narrow bands of noise and wide-band noises eliciting pitch sensations due to interaural phase shifts). The present results also indicate that for pitch sequences, processing performance is largely unrelated to pitch salience per se: for a fixed level of discriminability between sequence elements, sequences of elements with salient pitches are not necessarily better processed than sequences of elements with less salient pitches. An ideal-observer model for the same-different binary-sequence discrimination task is also developed in the present study. The model allows the computation of d' for this task using numerical methods

    Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones

    Get PDF
    When a pure tone or low-numbered harmonic is presented to a listener, the resulting travelling wave in the cochlea slows down at the portion of the basilar membrane (BM) tuned to the input frequency due to the filtering properties of the BM. This slowing is reflected in the phase of the response of neurons across the auditory nerve (AN) array. It has been suggested that the auditory system exploits these across-channel timing differences to encode the pitch of both pure tones and resolved harmonics in complex tones. Here, we report a quantitative analysis of previously published data on the response of guinea pig AN fibres, of a range of characteristic frequencies, to pure tones of different frequencies and levels. We conclude that although the use of across-channel timing cues provides an a priori attractive and plausible means of encoding pitch, many of the most obvious metrics for using that cue produce pitch estimates that are strongly influenced by the overall level and therefore are unlikely to provide a straightforward means for encoding the pitch of pure tones

    Aides auditives : aujourd'hui, et demain ?

    No full text
    National audienceDans cette communication, je ferai un état de l'art des progrès technologiques récents dans le domaine des aides - ou 'prothèses' - auditives, à l'exclusion des implants cochléaires ; en particulier : connectivité, analyseurs d'environnement, micros directionnels MEMs, et suppresseurs de bruit. Je soulignerai les avantages, mais également les limites de ces technologies et de l'approche dominante utilisée pour adapter l'aide auditive au patient. Enfin, je suggérerai certaines pistes de recherche et développement qui semblent à ce jour prometteuses pour tenter de dépasser les limites actuelles, en particulier, dans les domaines de l'écoute en milieu bruyant et de la mesure de l'effort d’écoute

    Separating the contributions of primary and unwanted cues in psychophysical studies.

    No full text

    harmonicity and concurrent sound segregation: psychoacoustical and neurophysiological findings

    No full text
    a b s t r a c t Harmonic complex tones are a particularly important class of sounds found in both speech and music. Although these sounds contain multiple frequency components, they are usually perceived as a coherent whole, with a pitch corresponding to the fundamental frequency (F0). However, when two or more harmonic sounds occur concurrently, e.g., at a cocktail party or in a symphony, the auditory system must separate harmonics and assign them to their respective F0s so that a coherent and veridical representation of the different sounds sources is formed. Here we review both psychophysical and neurophysiological (single-unit and evoked-potential) findings, which provide some insight into how, and how well, the auditory system accomplishes this task. A survey of computational models designed to estimate multiple F0s and segregate concurrent sources is followed by a review of the empirical literature on the perception and neural coding of concurrent harmonic sounds, including vowels, as well as findings obtained using single complex tones with mistuned harmonics

    Auditory stream segregation on the basis of amplitude-modulation rate

    No full text
    International audienc

    Auditory streaming without spectral cues in hearing-impaired subjects

    No full text
    International audienc

    Comparing models of the combined-stimulation advantage for speech recognition

    No full text
    corecore