7 research outputs found
THE THYROID HORMONE INACTIVATING DEIODINASE FUNCTIONS AS HOMODIMER
International audienceThe type 3 deiodinase (D3) inactivates thyroid hormone action by catalyzing tissue-specific inner ring de- iodination, predominantly during embryonic development. D3 has gained much attention as a player in the euthyroid sick syndrome, given its robust reactivation during injury and/or illness. While much of the structure biology of the deiodinases is derived from studies with D2, a dimeric endoplasmic-reticulum obligatory activating deiodinase, little is known about the holostructure of the plasma membrane-resident D3, the deiodinase capable of thyroid hormone inactivation. Here we used fluorescence resonance energy transfer (FRET) in live cells to demonstrate that D3 exists as homodimer. While D3 homodimerized in its native state, minor heterodimerization was also observed between D3:D1 and D3:D2 in intact cells, the significance of which remains elusive. Incubation with 0.5-1.2 M urea resulted in loss of D3 homodimeri- zation as assessed by bioluminescence resonance energy transfer (BRET) and a proportional loss of en- zyme activity, to a maximum of ~50%. Protein modeling using a D2-based scaffold identified potential dimerization surfaces in the transmembrane and globular domains. Truncation of the transmembrane do- main (ΔD3) abrogated dimerization and deiodinase activity except when co-expressed with full-length catalytically inactive deiodinase, thus assembled as ΔD3:D3 dimer; thus the D3 globular domain also ex- hibits dimerization surfaces. In conclusion, the inactivating deiodinase D3 exists as homo- or heterodimer in living intact cells, a feature that is critical for their catalytic activities
Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats
Thyroid hormone is a critical determinant of cellular metabolism and differentiation. Precise tissue-specific regulation of the active ligand 3,5,3′-triiodothyronine (T3) is achieved by the sequential removal of iodine groups from the thyroid hormone molecule, with type 3 deiodinase (D3) comprising the major inactivating pathway that terminates the action of T3 and prevents activation of the prohormone thyroxine. Using cells endogenously expressing D3, we found that hypoxia induced expression of the D3 gene DIO3 by a hypoxia-inducible factor–dependent (HIF-dependent) pathway. D3 activity and mRNA were increased both by hypoxia and by hypoxia mimetics that increase HIF-1. Using ChIP, we found that HIF-1α interacted specifically with the DIO3 promoter, indicating that DIO3 may be a direct transcriptional target of HIF-1. Endogenous D3 activity decreased T3-dependent oxygen consumption in both neuronal and hepatocyte cell lines, suggesting that hypoxia-induced D3 may reduce metabolic rate in hypoxic tissues. Using a rat model of cardiac failure due to RV hypertrophy, we found that HIF-1α and D3 proteins were induced specifically in the hypertrophic myocardium of the RV, creating an anatomically specific reduction in local T3 content and action. These results suggest a mechanism of metabolic regulation during hypoxic-ischemic injury in which HIF-1 reduces local thyroid hormone signaling through induction of D3
Construction of the eight-item patient-reported outcomes measurement information system pediatric physical function scales: built using item response theory
To create self-report physical function (PF) measures for children using modern psychometric methods for item analysis as part of Patient Reported Outcomes Measurement Information System (PROMIS)
Type 2 Iodothyronine Deiodinase Levels Are Higher in Slow-Twitch than Fast-Twitch Mouse Skeletal Muscle and Are Increased in Hypothyroidism
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T4 to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T3 in skeletal muscle physiology than previously assumed