14 research outputs found

    The Angiotensin-melatonin axis

    Get PDF
    Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies

    Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats

    Get PDF
    Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats

    Locally synthesized angiotensin modulates pineal melatonin generation

    No full text
    We aimed to study the mechanisms and the significance of the influence exerted by the renin-angiotensin system (RAS) on the pineal melatonin production. Pineal melatonin and other indoles were determined by HPLC with electrochemical detection after angiotensin AT1-receptor blockade with Losartan in vivo or in cultured glands. N-acetyltransferase (NAT) activity was radiometricaly measured. To test the in vivo relevance of the local RAS, pineal melatonin and its indole precursors were determined in transgenic rats with inhibited production of angiotensinogen exclusively in astrocytes, TGR(ASrAOGEN). Tryptophan hydroxylase (TPH) and NAT mRNA levels were determined by real-time RT-PCR. Pineal melatonin content was significantly decreased by AT1-receptor blockade in vivo, in cultured glands and in TGR(ASrAOGEN) (35%, 32.4% and 17.5% from control, respectively). Losartan produced a significant decrease of pineal 5-hydroxytryptophan, serotonin, 5-hydroxyindole acetic acid and N-acetylserotonin in pineal cultures. Also, the pineal content of the precursor indoles in TGR(ASrAOGEN) rats was significantly lowered. The reduction of 5-hydroxyhyptophan levels by 33-75% in both in vivo and in vitro studies suggests a decreased activity of TPH. Moreover, the TPH mRNA levels in TGR(ASrAOGEN) rats were significantly lower than control rats. On the other hand, NAT activity was unaffected by Losartan in pineal culture and its expression was not significantly different from control in TGR(ASrAOGEN) rats. Our results demonstrate that a local pineal RAS exerts a tonic modulation of indole synthesis by influencing the activity of TPH via AT1-receptors

    Endogenous vasopressin and the central control of heart rate during dynamic exercise

    No full text
    The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise
    corecore