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Accumulating evidence indicates that various biological and neuroendocrine circadian rhythmsmay be disrupted in cardiovascular
andmetabolic disorders.ese circadian alterationsmay contribute to the progression of disease. Our studies direct to an important
role of angiotensin II and melatonin in the modulation of circadian rhythms. e brain renin-angiotensin system (RAS) may
modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production
in the central nervous system may not only in�uence hypertension but also appears to affect the circadian rhythm of blood
pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including
hypertension and diabetesmellitus (DM). On the other hand, sincemelatonin is capable of amelioratingmetabolic abnormalities in
DMand insulin resistance, the bene�cial effects of RAS blockade could be improved through combined RAS blocker andmelatonin
therapy. Contemporary research is evidencing the existence of speci�c clock genes forming central and peripheral clocks governing
circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian
clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.

1. Introduction

e renin-angiotensin system (RAS) is considered as a
major endocrine regulator of cardiovascular homeostasis.
e RAS acts in endocrine, paracrine, and autocrine manner
in several organs and systems exercising various organ-
speci�c actions with effects on the cardiovascular system
[1]. Several lines of evidence from integrative physiology
and functional genomics to molecular and genetic levels
indicate that the RAS, circulating (endocrine) or tissue
(paracrine and autocrine), is one of the major drivers of
hypertension and cardiovascular diseases [1–3]. is knowl-
edge led to the successful development of drugs to block
the RAS system (angiotensin converting enzyme inhibitors,
angiotensin receptor blockers, and renin inhibitors) that
proved efficacious in the treatment of hypertension and other
cardiovascular diseases [4].

Melatonin is produced by the pineal gland predominantly
during night and it is considered as a major hormone regu-
lating the circadian rhythmicity of several biological systems
[5]. Research on melatonin functions revealed that this is not
only a regulator of the biological circadian clock [5] but also
it has a variety of biological functions [6]. Melatonin appears
to be involved in various diseases, such as sleep disorders,
dementia, mood disorders, cancer, and diabetes [7].

Both angiotensin and melatonin are synthesized in the
brain. Angiotensin produced locally in central nervous sys-
tem in nuclei involved in cardiovascular and �uid-electrolyte
homeostasis interacts with other systems, such as sympa-
thetic, vasopressinergic ones [1, 8]. Moreover, there is a local
pineal RAS that modulates the synthesis of melatonin, which
represents the main hormonal output of the pineal gland
[9, 10]. e RAS is classically involved in cardiovascular
and metabolic pathophysiology while melatonin deals with
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circadian rhythms. In this paper, we aimed at evidencing
interference at several levels between the RAS and melatonin
to modulate cardiovascular and metabolic pathophysiology
(Table 1).

2. Angiotensin-Melatonin Axis

e postulation of a local RAS in the brain has led to
discovery of brain-speci�c roles of angiotensin II (Ang II). A
local production of active angiotensins has been documented
in several brain nuclei and regions. Of these, the two neu-
roendocrine glands situated in the brain possess high levels
of Ang II-forming activities [9]. is led us to postulate the
presence of a local RAS in the pineal gland. Angiotensinogen,
the precursor of the RAS, has been identi�ed in pineal
glial cells while the receptors type AT1b are localized in
pinealocytes [10]. As part of the enzymatic cascade producing
Ang II, we identi�ed angiotensin converting enzyme (ACE)
and chymase but not renin, indicating the existence of
nonrenin pathways [9, 10]. By utilizing both pharmacological
and transgenic strategies, we could demonstrate that locally
produced Ang II in the pineal can modulate the melatonin
synthesis [11]. Melatonin represents the main hormonal
output of the pineal gland and it is considered as an important
modulator of circadian rhythms. Our studies indicate that
Ang II acts on the pinealocyte AT1 receptors to in�uence the
synthesis and activity of tryptophan hydroxylase (TPH), the
rate-limiting enzyme ofmelatonin synthesis.e demonstra-
tion of a functional pineal RAS interfering with melatonin
synthesis indicates that this may affect melatonin roles, such
as in modulation of circadian rhythms (Figure 1).

e circadian system comprised of a group of specialized
genes is a key integrator ofmetabolism and behavior that syn-
chronizes physiological processes. Circadian oscillators are
present not only in the suprachiasmatic nucleus (SCN) which
is considered to be the master clock but also in peripheral
tissues, including cardiovascular organs [12]. Several animal
studies are identifying roles for clock genes in cardiovascular
andmetabolic physiology and pathophysiology [13]. Genetic
manipulation of clock genes in transgenic mouse models has
uncovered new functions of internal clocks in pathogenesis
of cardiovascular diseases [14]. Since our and other studies
point to an important role of the RAS in the modulation of
circadian rhythms of blood pressure [15, 16], an interaction
with the genes governing circadian clock of cardiovascular
tissuesmight be conceivable. An interaction between theRAS
and the circadian system has been suggested to contribute
to the development of inverted BP pro�le in transgenic rats
harboring the mouse Ren-2 renin gene, TGR(mREN)27 [17,
18].

e interaction between angiotensin and melatonin both
centrally and peripherally in hypertension and cardiovascu-
lar diseases has to be studied. At pineal level, the challenge is
to understand in a hypertensive patient with elevated levels
of angiotensin how melatonin release is affected: is there
a feedback loop of high levels of circulating angiotensin
impacting on either potentiating more melatonin release to
counteract hypertension, or if there is a lack of effect, that is,

T 1: Opposing roles of angiotensin II and melatonin in
cardiovascular and metabolic pathophysiology.

Angiotensin Melatonin
Blood pressure: direct effects

Increase, vasoconstriction Decrease, vasodilation
Blood pressure: circadian rhythm

Nondipper/riser hypertension Decreased levels in nondipper
hypertension, chronobiotic

Central clock: suprachiasmatic nucleus
Precursor and receptors
present Receptors present

Sympathetic nervous system
Stimulation Sympatholytic

Oxidative stress
Increase Decrease

In�ammation
Increase Decrease

Central clock: suprachiasmatic nucleus
Precursor and receptors
present Receptors present

Insulin
Insulin resistance Increase in insulin sensitivity

resistance to central angiotensin, that resets the pineal gland
axis and reduces melatonin output, which then may further
potentiate hypertension. Further studies are necessary to
decipher and dissect possible interactions between the RAS,
melatonin, and the clock genes governing circadian clock.

3. Antagonistic Effects of Angiotensin
andMelatonin in Cardiovascular and
Metabolic Systems

3.1. Cardiovascular System. A cardiovascular role of mela-
tonin has been suggested already 40 years ago by the descrip-
tion of a pinealectomy-induced experimental hypertension
model [19–21]. Melatonin receptors are present in the vas-
culature and mediate vascular constriction and vasodilation
through MT1 and MT2 receptors, respectively [22]. Mela-
tonin administration generally induces a decrease in blood
pressure [22]. One possible mechanism contributing to the
melatonin hypotensive effects is through its sympatholytic
properties [23]. On the other hand, a marked reduction of
circulating melatonin has been observed in cardiovascular
diseases [24]. ese �ndings suggest antagonistic activities
of angiotensin and melatonin in the cardiovascular system
(Table 1). e mechanisms by which melatonin is antag-
onizing Ang II actions in cardiovascular and metabolic
diseases are comprising its antihypertensive, antioxidant,
and anti-in�ammatory functions [24]. Melatonin has direct
free radical scavenging and indirect antioxidant activity.
rough these marked antioxidant properties, melatonin has
cardioprotective effects, in particular in myocardial damage
aer ischemia-reperfusion [25].
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F 1: Pineal renin-angiotensin system (RAS) interacts with melatonin synthesis. Angiotensin II, produced from angiotensinogen
produced by glial cells, acts onAT1b receptors present on pinealocytes to stimulate tryptophan hydroxylase, which is the rate-limiting enzyme
in melatonin synthesis. Both angiotensin and melatonin may interact to regulate rhythmicity either centrally in the suprachiasmatic nucleus
(SCN) or peripherally in clocks present in several cardiovascular organs.

3.2. Circadian Rhythms of the Cardiovascular System. Mul-
tiple clinical studies have implicated blood pressure (BP)
and heart rate (HR) variability in the diagnosis and prog-
nosis of arterial hypertension and cardiovascular diseases.
In healthy individuals, there is a circadian variation of BP
with a nocturnal fall of 10%–20% during the sleep period
[26]. In hypertensive patients, this circadian rhythm may
disappear or even become inverted. erefore, according to
the BP circadian alterations, patients have been classi�ed as
“dippers” when the mean nighttime BP is ≥10% lower than
the mean daytime BP, as “nondippers” when the reduction
is <10% or as “risers” when it is higher [27]. Nondippers
and risers are at an increased risk for target organ damage
and cardiovascular events [28, 29]. Moreover, a circadian
pattern becomes quite obvious in the occurrence of acute
cardiovascular diseases, such as ischemia, infarction, stroke,
and sudden death, and new chronotherapeutic approaches in
antihypertensive therapy are trying to exploit the knowledge
of circadian rhythms in order to reduce these events [29].
erefore, a better understanding of the molecular biology
and pathophysiology of nondipper hypertension will lead to
a better understanding of the disease and possibly lead to
new diagnostic tools or therapeutic strategies. Further studies
investigating the molecular mechanisms of the circadian
regulation of the cardiovascular system should hopefully
reveal new diagnostic tools or treatment algorithms for
disease.

Our group was the �rst to do demonstrate that chronic
Ang II infusionmay induce a shi in the circadian BP rhythm

(Figure 2) [16]. Ang II infused subcutaneously at doses of up
to 250 ng/kg per minute that does not produce direct vaso-
constriction is described as “slow pressor” or “subpressor”
and can induce a gradual increase of BP. Chronic infusion
(days to weeks) of subpressor Ang II subcutaneously induces
nondipper hypertension similarly with the renovascular and
other forms of human hypertension where the circadian
variation of blood pressure is altered [16, 30, 31]. Alterations
in the circadian BP rhythm are not synchronized with
alterations of heart rate or locomotor activity, contributing
to the concept that the circadian variability in blood pressure
and heart rate are differentially regulated [15, 16]. We further
hypothesized that the brain RAS might be involved in the
Ang II-induced BP circadian shi. To test this hypothesis,
we studied a transgenic rat that has reduced angiotensinogen
levels in the brain through expression of an antisense RNA
against angiotensinogen, induced by means of the astrocyte-
speci�c glial �brillary acidic protein promoter [32]. Ang II
infusion in the TGR(ASrAOGEN) transgenic rats did not
induce a BP circadian shi, indicating that peripheral RAS
interacts with the brain RAS to induce not only hypertension
[2] but also a BP circadian shi [15, 16]. We employed
the TGR(ASrAOGEN) to investigate if the brain RAS is
involved in circadian rhythm reentrainment to light phase
shis. e BP and HR acrophases (peak time of curve
�tting) in TGR(ASrAOGEN) rats read�usted to light shis
signi�cantly slower than in control (Sprague-�awley) rats
[15, 16]. However, the acrophases of locomotor activity
changed similarly in both strains. ese data suggest that
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F 2: Angiotensin versus melatonin in cardiovascular and metabolic diseases. An increase in angiotensin induces nondipper/riser
hypertension, which is characterized by a decrease in melatonin. Angiotensin and melatonin have opposing effects on insulin sensitivity.

treatment with RAS blockers with high penetrability of
the blood-brain barrier (such as candesartan and valsartan)
could slow the resynchronization of cardiovascular system in
jet-lag conditions of travelers adapting to a new time zone.

Research on the circadian actions of Ang II has pre-
occupied several research groups. Among these, the group
of Lemmer has provided several lines of evidence on the
importance and the mechanisms regulating cardiovascular
circadian rhythms [29]. Lemmer et al. provided signi�-
cant insights in the pathophysiology of a transgenic rat
model, TGR(mREN2)27 [17, 18]. e TGR(mREN2)27 is
a well-characterized model of malignant hypertension due
to an overactive RAS as it harbors the mouse salivary
gland renin gene (mREN2). e TGR(mREN2)27 not only
become hypertensive and develop target-organ damage but
also exhibit an inverted circadian rhythm of BP, which
makes them a valuable model to further study the molecular
biology of circadian rhythms. However, detailedmechanisms
responsible for the Ang II-induced nondipper hypertension
are still not well understood. e circadian rhythms that
are a characteristic of most of the physiological parameters
are governed by biological clocks. Ablation of the SCN
of the hypothalamus that serves as the main zeitgeber for
such circadian rhythms eliminates BP, HR, and locomotor
activity [33, 34]. Ang II might interact directly or through
melatonin to in�uence the 24-h rhythmic expression of clock
genes in SCN (Figure 1). Evidence on a mutual relationship
between melatonin and circadian oscillators has recently

been reviewed by Hardeland [35]. Also, an impaired noc-
turnal melatonin secretion has been detected in nondipper
hypertensive patients (Figure 2) [36]. Besides melatonin,
the brain RAS might in�uence the central circadian clock
present in the hypothalamic SCN either directly or through
vasopressin that is another hormone with demonstrated roles
in circadian rhythms [8, 11, 37].

Ang II and melatonin might interact with circadian
oscillators present not only in the SCN but also in peripheral
tissues, including cardiovascular organs (Figure 1) [12].
Several animal studies are identifying roles for clock genes
in cardiovascular physiology [13]. Genetic manipulation of
clock genes in transgenic mouse models has uncovered new
functions of internal clocks in pathogenesis of cardiovascular
diseases [14]. Recent evidence is suggesting that a disruption
of central or peripheral clocks may contribute to the progres-
sion of cardiovascular diseases [38]. Researching for further
insights on the roles of biological clocks in cardiovascular
organs shall provide acumens into the relevance of the
circadian rhythms in cardiovascular pathology.

3.3. Metabolic Syndrome, Insulin Resistance, and Diabetes.
Several lines of evidence including successful therapies with
drugs acting on RAS are demonstrating roles of RAS in
diabetes mellitus and metabolic syndrome. Putnam et al.
recently reviewed the accumulating evidence describing the
RAS as a “target of and contributor to dyslipidemias, altered
glucose homeostasis, and hypertension of the metabolic
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syndrome” [39]. Angiotensin II causes insulin resistance
through activation of the AT1R and increased production
of mineralocorticoids [40]. However, the underlying mech-
anisms of Ang II leading to insulin resistance remain to be
fully elucidated. Melatonin on the other hand induces an
increased insulin sensitivity [35]. Evidence for a link between
melatonin and insulin came from pinealectomized animals
that develop diabetogenic syndrome characterized by insulin
resistance and a 50% reduction of GLUT4 in adipose and
muscular tissue [41]. Moreover, it was demonstrated that
the absence of melatonin in pinealectomized animals impairs
the temporal organization of several metabolic functions
associated to the carbohydrate metabolism, such as daily
insulin secretion, adaptation to starvation, and exercise [42–
44]. is dramatic picture can be partially or totally restored
by melatonin reposition or restricted feeding [45, 46]. Mela-
tonin acting through MT1 membrane receptors is able to
induce insulin receptor phosphorylation at the same time that
mobilizes several intracellular transduction steps in common
to insulin signaling [47]. Melatonin is able to restore insulin
sensitivity and regulates food ingestion and body weight and
abdominal adiposity in old rats [48].

Not only melatonin regulates insulin but also insulin can
act on in vitro pineal glands potentiating the noradrenergic-
induced melatonin synthesis, regulating the activity of the
enzymes tryptophan hydroxylase and N-acetyltransferase
through aer-transcriptional mechanisms [49].

e �rst reports on diabetes and melatonin production
showed that diabetic rats and mice, chemically-induced by
alloxan (ALX) or streptozotocin (STZ), presented a decrease
in melatonin synthesis and plasma levels [50, 51], although
Champney et al. [52] reported no alterations in the level
of melatonin in diabetic rats. Melatonin was also observed
to suppress the onset of type 1 diabetes in nonobese mice,
while pinealectomy had the opposite effect [53]. In type 2
diabetic patients and diabetic Goto Kakizaki rats a decreased
serum melatonin level was observed [54]. In STZ-induced
diabetic animals, melatonin was shown to decrease serum
lipid oxidation [55] and protein glycosylation [56], as well as
regulate the activity of antioxidant enzymes, improving the
protection against the oxidative damage caused by diabetes
[57–59]. Despite that, melatonin was not able to normalize
hyperglycemia and/or body weight in these animals [55, 60,
61] and lower levels of the indolamine were observed in
peripheral tissues like pancreas, kidney, spleen, and duode-
num [62].

4. Conclusions and Perspectives

Accumulating evidence suggests that not only angiotensin
interferes with melatonin synthesis and release but also both
hormones interact at several levels having opposing effects
in cardiovascular and metabolic pathophysiology (Table 1).
Furthermore, evidence is indicating that not only melatonin
but also angiotensin may interfere with circadian rhythms.
e intimal regulatory mechanisms of interference between
the two systems both centrally and peripherally, at synthesis
and action levels, in homeostatic and disease conditions await

further investigation. On how peripheral RAS interacts with
the pineal RAS in hypertension and cardiovascular disease
and if the sympathetic nervous system or other systems are
involved in this interaction are still open questions.

Contemporary progress in chronobiology directs to an
important role of clock-associated genes in the progression
of cardiovascular and metabolic diseases. Since angiotensin
appears to be involved in the modulation of circadian
rhythms of blood pressure, an interaction with the clock
genes seems likely.erefore, we believe that further research
on the molecular biology of circadian alterations involving
interactions between angiotensin,melatonin, and clock genes
may have an impact on cardiovascular and metabolic patho-
physiology leading to new chronotherapeutic strategies.
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