11 research outputs found

    Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection

    Get PDF
    There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine

    Plaque antibody selection: rapid immunological analysis of a large number of recombinant phage clones positive to sera raised against Plasmodium falciparum antigens

    No full text
    International audienceA library of Plasmodium falciparum genomic DNA on the lambda gt11 phage vector was screened for clones positive to a rabbit serum raised against a purified fraction of P. falciparum proteins and a pool of sera from malaria patients. The positive clones were characterized with antibodies purified by the plaque antibody selection technique. This technique consist of purifying specific antibodies on a nitrocellulose filter blotted directly on a lawn of plaques of an antigen-producing phage clone. The purified antibodies are then used as a probe in a Western blot of parasite protein extract, for preliminary characterization of the clones. Using this method, two different clones coding for P. falciparum antigens were identified with the rabbit serum and about 20 with the human sera. This method can be of general use, i.e. it is not limited to parasite systems, and facilitates the immunological analysis and identification of a large number of clones

    Targeting a Reticulocyte Binding Protein and Duffy Binding Protein to Inhibit Reticulocyte Invasion by Plasmodium vivax

    No full text
    International audiencePlasmodium vivax merozoite invasion is restricted to Duffy positive reticulocytes. Merozoite interaction with the Duffy antigen is mediated by the P. vivax Duffy binding protein (PvDBP). The receptor-binding domain of PvDBP maps to an N-terminal cysteine-rich region referred to as region II (PvDBPII). In addition, a family of P. vivax reticulocyte binding proteins (PvRBPs) mediates interactions with reticulocyte receptors. The receptor binding domain of P. vivax reticulocyte binding protein 1a (PvRBP1a) maps to a 30 kD region (PvRBP1a30). Antibodies raised against recombinant PvRBP1a30 and PvDBPII recognize the native P. vivax antigens and inhibit their binding to host receptors. Rabbit IgG purified from sera raised against PvRBP1a30 and PvDBPII were tested individually and in combination for inhibition of reticulocyte invasion by P. vivax field isolates. While anti-PvDBPII rabbit IgG inhibits invasion, anti-PvRBP1a30 rabbit IgG does not show significant invasion inhibitory activity. Combining antibodies against PvDBPII and PvRBP1a30 also does not increase invasion inhibitory activity. These studies suggest that although PvRBP1a mediates reticulocyte invasion by P. vivax merozoites, it may not be useful to include PvRBP1a30 in a blood stage vaccine for P. vivax malaria. In contrast, these studies validate PvDBPII as a promising blood stage vaccine candidate for P. vivax malaria

    Role of a patatin-like phospholipase in Plasmodium falciparum gametogenesis and malaria transmission

    No full text
    International audienceTransmission of Plasmodium falciparum involves a complex process that starts with the ingestion of gametocytes by female Anopheles mosquitoes during a blood meal. Activation of gametocytes in the mosquito midgut triggers "rounding up" followed by egress of both male and female gametes. Egress requires secretion of a perforin-like protein, PfPLP2, from intracellular vesicles to the periphery, which leads to destabilization of peripheral membranes. Male gametes also develop flagella, which assist in binding female gametes for fertilization. This process of gametogenesis, which is key to malaria transmission, involves extensive membrane remodeling as well as vesicular discharge. Phospholipase A2 enzymes (PLA2) are known to mediate membrane remodeling and vesicle secretion in diverse organisms. Here, we show that a P. falciparum patatin-like phospholipase (PfPATPL1) with PLA2 activity plays a key role in gametogenesis. Conditional deletion of the gene encoding PfPATPL1 does not affect P. falciparum blood stage growth or gametocyte development but reduces efficiency of rounding up, egress, and exflagellation of gametocytes following activation. Interestingly, deletion of the PfPATPL1 gene inhibits secretion of PfPLP2, reducing the efficiency of gamete egress. Deletion of PfPATPL1 also reduces the efficiency of oocyst formation in mosquitoes. These studies demonstrate that PfPATPL1 plays a role in gametogenesis, thereby identifying PLA2 phospholipases such as PfPATPL1 as potential targets for the development of drugs to block malaria transmission

    Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria

    Get PDF
    International audienceBackground: The Plasmodium vivax Duffy Binding Protein (PvDBP) is a key target of naturally acquired immunity. However, region II of PvDBP, which contains the receptor-binding site, is highly polymorphic. The natural acquisition of antibodies to different variants of PvDBP region II (PvDBPII), including the AH, O, P and Sal1 alleles, the central region III-V (PvDBPIII-V), and P. vivax Erythrocyte Binding Protein region II (PvEBPII) and their associations with risk of clinical P. vivax malaria are not well understood.Methodology: Total IgG and IgG subclasses 1, 2, and 3 that recognize four alleles of PvDBPII (AH, O, P, and Sal1), PvDBPIII-V and PvEBPII were measured in samples collected from a cohort of 1 to 3 year old Papua New Guinean (PNG) children living in a highly endemic area of PNG. The levels of binding inhibitory antibodies (BIAbs) to PvDBPII (AH, O, and Sal1) were also tested in a subset of children. The association of presence of IgG with age, cumulative exposure (measured as the product of age and malaria infections during follow-up) and prospective risk of clinical malaria were evaluated.Results: The increase in antigen-specific total IgG, IgG1, and IgG3 with age and cumulative exposure was only observed for PvDBPII AH and PvEBPII. High levels of total IgG and predominant subclass IgG3 specific for PvDBPII AH were associated with decreased incidence of clinical P. vivax episodes (aIRR = 0.56–0.68, P≤0.001–0.021). High levels of total IgG and IgG1 to PvEBPII correlated strongly with protection against clinical vivax malaria compared with IgGs against all PvDBPII variants (aIRR = 0.38, P<0.001). Antibodies to PvDBPII AH and PvEBPII showed evidence of an additive effect, with a joint protective association of 70%.Conclusion: Antibodies to the key parasite invasion ligands PvDBPII and PvEBPII are good correlates of protection against P. vivax malaria in PNG. This further strengthens the rationale for inclusion of PvDBPII in a recombinant subunit vaccine for P. vivax malaria and highlights the need for further functional studies to determine the potential of PvEBPII as a component of a subunit vaccine for P. vivax malaria

    Genetic diversity in two Plasmodium vivax protein ligands for reticulocyte invasion.

    No full text
    The interaction between Plasmodium vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) has been described as critical for the invasion of human reticulocytes, although increasing reports of P. vivax infections in Duffy-negative individuals questions its unique role. To investigate the genetic diversity of the two main protein ligands for reticulocyte invasion, PvDBP and P. vivax Erythrocyte Binding Protein (PvEBP), we analyzed 458 isolates collected in Cambodia and Madagascar from individuals genotyped as Duffy-positive. First, we observed a high proportion of isolates with multiple copies PvEBP from Madagascar (56%) where Duffy negative and positive individuals coexist compared to Cambodia (19%) where Duffy-negative population is virtually absent. Whether the gene amplification observed is responsible for alternate invasion pathways remains to be tested. Second, we found that the PvEBP gene was less diverse than PvDBP gene (12 vs. 33 alleles) but provided evidence for an excess of nonsynonymous mutations with the complete absence of synonymous mutations. This finding reveals that PvEBP is under strong diversifying selection, and confirms the importance of this protein ligand in the invasion process of the human reticulocytes and as a target of acquired immunity. These observations highlight how genomic changes in parasite ligands improve the fitness of P. vivax isolates in the face of immune pressure and receptor polymorphisms

    Unveiling P. vivax invasion pathways in Duffy-negative individuals

    No full text
    Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s).Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underesti- mated biological problem with potential clinical consequences in sub-Saharan Africa

    One hundred malaria attacks since birth. A longitudinal study of African children and young adults exposed to high malaria transmissionResearch in context

    No full text
    Summary: Background: Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods: Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings: We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1–3 years, and six children (5.4%) each year at age 4–6 years. Interpretation: Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding: The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding
    corecore