114 research outputs found

    Highly luminescent perovskite–aluminum oxide composites

    Get PDF
    In this communication we report on the preparation of CH3NH3PbBr3 perovskite/Al2O3 nanoparticle composites in a thin film configuration and demonstrate their high photoluminescence quantum yield. The composite material is solution-processed at low temperature, using stable alumina nanoparticle dispersions. There is a large influence of the alumina nanoparticle concentration on the perovskite morphology and on its photoluminescence

    Perovskite solar cells prepared by flash evaporation

    Get PDF
    A simple vacuum deposition method for the preparation of high quality hybrid organic-inorganic methylammonium lead iodide perovskite thin films is reported. When sandwiched in between organic charge transporting layers, such films lead to solar cells with a power conversion efficiency of 12.2%

    New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks In Vivo

    Get PDF
    Sensory information processing is a fundamental operation in the brain that is based on dynamic interactions between different neuronal populations. Astrocytes, a type of glial cells, have been proposed to represent active elements of brain microcircuits that, through dynamic interactions with neurons, provide a modulatory control of neuronal network activity. Specifically, astrocytes in different brain regions have been described to respond to neuronal signals with intracellular Ca2+ elevations that represent a key step in the functional recruitment of astrocytes to specific brain circuits. Accumulating evidence shows that Ca2+ elevations regulate the release of gliotransmitters that, in turn, modulate synaptic transmission and neuronal excitability. Recent studies also provided new insights into the spatial and temporal features of astrocytic Ca2+ elevations revealing a surprising complexity of Ca2+ signal dynamics in astrocytes. Here we discuss how recently developed experimental tools such as the genetically encoded Ca2+ indicators (GECI), optogenetics and chemogenetics can be applied to the study of astrocytic Ca2+ signals in the living brain

    Air stable hybrid organic-inorganic light emitting diodes uzing ZnO as the cathode

    Get PDF
    An air stable hybrid organic-inorganic light emitting device is presented. This architecture makes use of metal oxides as charge injecting materials into the light emitting polymer, avoiding the use of air sensitive cathodes commonly employed in organic light emitting diode manufacturing. We report the application of zinc oxide as a cathode in an organic light emitting device. This electroluminescent device shows high brightness levels reaching 6500 cd/m2 at voltages as low as 8 V. Compared to a conventional device using low workfunction metal cathodes, our device shows a lower turn-on voltage and it can operate in air

    Low Temperature, Vacuum-Processed Bismuth Triiodide Solar Cells with Organic Small-Molecule Hole Transport Bilayer

    Get PDF
    Herein, the preparation of fully vacuum-processed bismuth triiodide solar cells with low annealing temperature is reported. Planar n-i-p devices are prepared using a thin compact SnO2 layer as the electron extraction layer and an electron blocking/hole extraction bilayer consisting of an intrinsic and doped organic hole-transport molecule. Using this configuration, herein, higher fill-factors and overall power conversion efficiencies than with conventional solution-processed hole transport materials are achieved

    Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids

    Get PDF
    A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence quantum yields as high as 29% and 5% have been obtained for green‐ and blue‐emitting perovskite solids, even at very low excitation densities

    Efficient photovoltaic and electroluminescent perovskite devices

    Get PDF
    Planar diode structures employing hybrid organic-inorganic methylammonium lead iodide perovskites lead to multifunctional devices exhibiting both a high photovoltaic efficiency and good electroluminescence. The electroluminescence strongly improves at higher current density applied using a pulsed driving method

    Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites

    Get PDF
    Fully inorganic cesium lead halide perovskite thin films were prepared by an easy, fast and dry process based on single-source vacuum deposition. We investigated the structural and optical characteristics of the so-formed films as a function of chemical composition (chloride, bromide and iodide films were formed), post-deposition thermal annealing, as well as previous mechanosynthesis of perovskite powders. We found out that the CsPbX3 perovskite was preferentially formed for the smaller halides and favored by previous ball-milling of CsX and PbX2 precursors. When bigger halides were used and/or CsX and PbX2 precursors were simply mixed without previous mechanosynthesis, PbX2-rich compounds such as CsPb2X5 were preferentially formed in the thin films

    Stable Light-Emitting Electrochemical Cells Using Hyperbranched Polymer Electrolyte

    Get PDF
    The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed
    corecore