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Sensory information processing is a fundamental operation in the brain that is based
on dynamic interactions between different neuronal populations. Astrocytes, a type of
glial cells, have been proposed to represent active elements of brain microcircuits that,
through dynamic interactions with neurons, provide a modulatory control of neuronal
network activity. Specifically, astrocytes in different brain regions have been described
to respond to neuronal signals with intracellular Ca2+ elevations that represent a key
step in the functional recruitment of astrocytes to specific brain circuits. Accumulating
evidence shows that Ca2+ elevations regulate the release of gliotransmitters that, in turn,
modulate synaptic transmission and neuronal excitability. Recent studies also provided
new insights into the spatial and temporal features of astrocytic Ca2+ elevations revealing
a surprising complexity of Ca2+ signal dynamics in astrocytes. Here we discuss how
recently developed experimental tools such as the genetically encoded Ca2+ indicators
(GECI), optogenetics and chemogenetics can be applied to the study of astrocytic Ca2+

signals in the living brain.
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INTRODUCTION

Brain function is based on complex networks composed of different, highly interacting cell
populations. The activity of principal projecting neurons is locally regulated by different classes
of interneurons (Markram et al., 2004; Ascoli et al., 2008; Isaacson and Scanziani, 2011) as well
as by the glial cells astrocytes. These non-neuronal cells constantly interact with neurons and
exert functions beyond their classical role in brain tissue homeostasis. Indeed, astrocytes sense
neuronal activity and release gliotransmitters such as glutamate, ATP and D-serine, modulating
synaptic transmission, controlling neural network excitability (Araque et al., 2014; Bazargani
and Attwell, 2016) and contributing to neurovascular coupling mechanisms (Zonta et al., 2003;
Filosa and Iddings, 2013; Howarth, 2014). Gliotransmitter release occurs through mechanisms
that are only partially identified, and it is regulated by intracellular Ca2+ oscillations induced by
different neurotransmitters (Zorec et al., 2012; Sahlender et al., 2014; Bazargani and Attwell, 2016).
Accordingly, these Ca2+ changes represent a key step in functional neuron-astrocyte interactions.
It follows that single or two-photon laser-scanning microscope Ca2+ imaging is a suitable approach

Abbreviations: CNO, clozapine-N-oxide; DREADDs, designer receptors exclusively activated by designer drugs;
GECI, genetically encoded calcium indicators; GFAP, glial fibrillary acidic protein; GLAST, glutamate aspartate
transporter; ROI, region of interest; S100β, S100 calcium-binding protein B; SERCA, sarco/endoplasmic recticulum
Ca2+ ATPase.
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to evaluate the activity of astrocytes from in vitro and
in vivo preparations. Noteworthy, although the tools used
to study neuronal Ca2+ signals are commonly applied also
to study astrocytic Ca2+ signals, astrocytes exhibit peculiar
properties that must be taken into careful consideration. For
instance, Ca2+ sensitive dye choice is crucial for astrocytes as
the processes, that are in contact with synapses, are nanoscopic
fine lamellipodia-like structures (Rusakov, 2015). Accordingly,
the Ca2+ signal changes associated with these structures can
be more accurately monitored with genetically encoded Ca2+

indicators (GECI) rather than bulk-loaded classical Ca2+ dyes.
Here we summarize the innovative techniques to study neuron-
astrocyte interactive networks in vivo, describe advantages and
limitations and discuss possible future developments in this field.

IMAGING TECHNIQUES

The development of in vivo optical imaging, especially
two-photon laser microscopy, is providing important
information on neuronal as well as astrocytic networks in
mammalian brain (Göbel and Helmchen, 2007; Ding, 2013).
Although the imaging techniques used for studying astrocytes
are essentially the same as those for neurons, astrocyte unique
morphology and physiology must be taken into account
in the choice of the proper experimental design. Astrocyte
morphology comprises three major compartments: the soma,
the few thick proximal processes and the nanometric, densely
arborized fine distal processes (see Figure 1). Each of these
compartments likely has distinctive functional properties
that give rise to the extremely complex spatio-temporal Ca2+

dynamics observed in astrocytes. The different spatial scale
and Ca2+ dynamics peculiar to each of these compartments
set up different challenges for imaging astrocyte function. The
astrocytic soma is 5–10 µm in diameter and is characterized
by slow, sustained Ca2+ changes. Ca2+ elevations at the soma
are not commonly induced by low levels of synaptic activity
and are preferentially activated by an intense firing in the
surrounding neuronal circuits (Perea and Araque, 2007).
Proximal processes are typically 2–5 µm thick, about 20 µm
long and are characterized by small, rapid and localized Ca2+

elevations that can evolve in expanded intracellular waves
eventually propagating to the soma (Pasti et al., 1997; Di Castro
et al., 2011; Panatier et al., 2011). Two photon-imaging studies
suggest that astrocytic proximal processes can sense more
finely synaptic transmission around them, possibly integrating
signals from the finer distal processes that contact individual
synapses. The distal processes (30–80 nm; Rusakov, 2015) appear
as multiple, blurred, faint bushes tiling the entire astrocytes
domain. Because of the limitations of the optical resolution,
distal processes are difficult to image. Recent experiments reveal
a higher frequency in Ca2+ events with an even faster kinetics
in these processes compared to what observed in proximal
processes and soma (Srinivasan et al., 2015; Poskanzer and
Yuste, 2016).

Imaging of astrocyte function is boosted by the application
of in vivo two-photon microscopy in awake behaving animals,
particularly because Ca2+ signals in astrocytes are strongly

FIGURE 1 | Astrocyte main sub-structures. Soma, thick proximal proce-
sses and fine distal processes. These latter form a mesh of ultra-thin
protrusions (below optical resolution; gray) in contact with synapses (black;
right inset).

depressed during anesthesia (Schummers et al., 2008).
Refinement of cranial window implants (Goldey et al.,
2014) and behavioral paradigms for head fixed animals are
allowing investigation of astrocyte function in the neocortex
(Perea et al., 2014; Monai et al., 2016) and astrocyte plasticity
in long-term chronic preparations. Microscopes equipped
with resonant scanners and piezoelectric z-drivers will
allow to record from large cortical columns (in the order of
millimeters, Sofroniew et al., 2016) or from the whole 3D
arborization of a single astrocyte with high spatial and temporal
resolutions (i.e., for resonant galvanometers from 30 Hz for
512 pixels to 60 Hz for 256 pixels; for review see Ji et al.,
2016).

Although the use of longer wavelength light for two-photon
compared to single-photon excitation laser-scanningmicroscopy
has increased light penetration, two-photon imaging is
essentially restricted to structures such as neocortex, olfactory
bulb or cerebellar cortex, where signals from cells within 1 mm
from brain surface can be visualized. The introduction of
three-photon imaging promises to extend these techniques to
imaging subcortical structures like the hippocampus (Horton
et al., 2013). Other promising approaches include in vivo optical
microendoscopes or microprisms that can be inserted into
the brain to allow a variety of viewing angles and imaging of
otherwise unreachable deep brain regions (Chia and Levene,
2009; Barretto and Schnitzer, 2012; Andermann et al., 2013;
Heys et al., 2014).

Another limitation in the data analysis of astrocytic
Ca2+ signals is the segmentation of functionally meaningful
regions of interests. Astrocytic processes do not show a clear
compartmentalization, such as the spines in neuronal dendrites
or the synaptic boutons in axon terminals, and the identification
of proximal and distal domains is often arbitrary. Various
approaches have been suggested to resolve this problem (Di
Castro et al., 2011; Srinivasan et al., 2015), mostly based on
thresholding and segmentation of intensity projection image in
domains of specific size. An interesting method would be the
application to astrocytes of computational methods developed
to segment recordings from large neuronal fields of view into
independent regions of interest (ROIs). These algorithms are
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only loosely based on anatomical criteria; rather, they cluster
together pixels with correlated time-courses (Pnevmatikakis
et al., 2016). These methods could prove very useful for an
unbiased segmentation of functional microdomains in astrocytic
processes.

CALCIUM SENSITIVE DYES

Over the last decades fundamental insights into Ca2+ signal
dynamics in astrocytes have been provided by organic Ca2+

indicator dyes. These indicators, such as Fluo-4 and Fura-2, are
easily delivered to astrocytes by bulk or intracellular loading with
the acetoxymethy esters (Panatier et al., 2011; Mariotti et al.,
2016). Despite their easy applicability in brain slices from young
animals, these indicators have many drawbacks. Indeed, loading
with organic Ca2+ indicators of astrocytes from adult brain slices
is very unsatisfactory. In vivo bulk-loading with Oregon Green
is possible and commonly used (Takata et al., 2011), but it is
time consuming and it needs intra-tissue applications that may
damage the area under investigation. Furthermore this approach
is inadequate for chronic applications (Roome and Kuhn, 2014).
Most importantly, synthetic indicators are unsatisfactory loaded
in fine astrocytic processes. The GECIs have overcome most of
these limitations and represent an alternative tool for studying
in vivo astrocyte physiology. Indeed their use provides insights
into the Ca2+ signal dynamics at astrocyte fine processes due
to a good expression also at this site. In addition, GECI can
be engineered to target specific structures such as the plasma
membrane or the intracellular organelles, like mitochondria,
or the endoplasmic reticulum (for reviews see Takata et al.,
2011; Tian et al., 2012). Indeed, a recent study used GECIs
to unveil an important role of the mitochondria permeability
transition pore in astrocytic Ca2+ signaling (Agarwal et al., 2017).
While many aspects remain to be defined, important advances
have been, therefore, already made in the understanding of
the mechanisms at the basis of the Ca2+ transients in the
astrocytic fine processes. GECIs consist of a Ca2+ binding
protein linked to a conformational actuator (M13 peptide) and
one or two fluorescent proteins and are extensively used for
studying astrocyte physiology in vivo. Several tools are used
to express GECIs in astrocyte: mouse lines expressing Cre
recombinase under the control of specific promoters (glutamate
aspartate transporter (GLAST), glial fibrillary acidic protein
(GFAP) or S100 calcium-binding protein B (S100β) crossbred
with GCaMP-floxed mice represent a non-invasive method to
express GECIs in a subpopulation of astrocytes (Paukert et al.,
2014). Other techniques include in utero electroporation to
interrogate astrocytes during development (Gee et al., 2015;
Szczurkowska et al., 2016) and adeno-associated viruses (AAV).
AAV-based expression technique can be used to target astrocytes
with high levels of GECIs expression in a specific brain region
without the need of Cre-mice line. Recently several works
have shown how GECIs can be used to study in detail Ca2+

activity from individual astrocyte in vitro and in vivo (Atkin
et al., 2009; Shigetomi et al., 2013). GCaMP6f expression in
mouse somatosensory cortex through viral vectors has provided
new insights on astrocyte activity in vivo. Indeed GCaMP6f

expressing astrocytes reveal a previously unexpected pattern of
Ca2+ activity at the distal fine processes, i.e., microdomains
(Srinivasan et al., 2015). Notably, given the complexity of,
astrocytic Ca2+ signals, a critical step is the development of
an approach to accurately measure Ca2+ microdomain activity.
While a few algorithms have been already released (Srinivasan
et al., 2015), more efforts are needed to obtain an overall
valuable method of data analysis that can be shared by
the scientific community. Finally, although GECIs improved
the quality of Ca2+ activity recordings, different promoters,
regulatory sequences and expression technique should be taken
into account to optimize the signal-to-noise ratio and to avoid
cytotoxicity.

SELECTIVE TOOLS TO STUDY
NEURON-ASTROCYTE CROSSTALK

A major issue in studying neuron-astrocyte interactions is
the specificity of the stimuli used to selectively activate or
inhibit one of these two cell populations without directly
affecting the other. Indeed, astrocytes and neurons share
most of ligand-gated receptors and astrocytes respond to a
variety of neurotransmitters from glutamatergic, cholinergic
and noradrenergic signaling pathways, that induce astrocytic
Ca2+ elevations (Schummers et al., 2008; Takata et al., 2011;
Navarrete et al., 2012; Paukert et al., 2014). Most in vivo
studies on astrocytes were performed in anesthetized animals,
a condition that greatly reduces spontaneous Ca2+ events
compared to awake animals (Nimmerjahn et al., 2009; Thrane
et al., 2012). It is also noteworthy that in behaving animals,
astrocytes can be simultaneously recruited by the activity of
different neuronal networks, making it very challenging to isolate
a single component in neuron-to-astrocyte signaling. Direct
astrocyte stimulation through membrane receptor-mediated
signaling pathways leading to intracellular Ca2+ elevations in
astrocytes may not be selective as these receptors are also
expressed in neurons. However, with the recent development
of chemogenetics and optogenetics, we have now powerful
tools to interrogate selective cell populations in the living
brain.

Chemogenetic approach makes use of modified G-coupled
receptors, called designer receptor exclusively activated by
designer drugs (DREADDs), that can be activated by selective
agonists devoid of endogenous targets (for reviews see Urban
and Roth, 2015; Roth, 2016; Whissell et al., 2016). DREADDs
are selectively expressed in a desired cell population usually
via viral vectors or using transgenic mice. The use of viral
vectors has the advantage, compared to that of transgenic mouse
lines, to achieve DREADD expression in the specific brain
ROI, avoiding the risk of a large scale response upon agonist
administration. On the other hand, it has to be taken into
account that viral vectors are not completely devoid of toxicity.
The most used DREADDs are the excitatory Gq- or inhibitory
Gi-coupled receptors hM3Dq and hM4Di, respectively, derived
from human muscarinic receptor 3 and 4. Both can be activated
with the selective agonist clozapine-N-oxide (CNO), devoid of
endogenous ligands, that can cross the blood brain barrier after
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oral or i.p. administration (Roth, 2016). This chemogenetic
approach thus offers the opportunity for a noninvasive and
selective activation, or inhibition, of specific cell populations.
Inhibition of a selected neuronal group with DREADD approach
was indeed used to oppose epileptic activity (Katzel et al.,
2014; Avaliani et al., 2016). Alternatively hM3Dq can be used
to selectively evoke Ca2+ transients in astrocytes, allowing
interrogation of local neuronal circuits. This approach has been
successfully used in hypothalamus astrocytes to modulate food
intake (Yang et al., 2015) and in nucleus accumbens astrocytes
to modulate reward and motivation (Bull et al., 2014), and
reinstate cocaine seeking (Scofield et al., 2015). The timing of
the response to chemogenetic approach differs substantially to
other techniques such as optogenetics, which is three orders of
magnitude faster (see below). DREADD activation with CNO
occurs after 30 min and lasts for about 2 h (Guettier et al., 2009).
This can be an option to study long lasting network effects or
behaviors, but not for short lasting phenomena. Alternatively,
other faster DREADD have been developed, such as a kappa-
opioid receptor (KORD) coupled to a Gi-protein that has no
endogenous ligands. KORD can be selectively activated by
salvinorin B (SALB) that evokes shorter response than CNO on
DREADDs, in the range of few minutes (Vardy et al., 2015).
Therefore, the combination of multiple DREADDs provides
neuroscientists with a set of choices, depending on the timing of
the network activity to be studied.

The optogenetic technique was applied to mammalian cells
more than 10 years ago by the group of Karl Deisseroth (Boyden

et al., 2005; Fenno et al., 2011). By combining the selective
expression of light-gated opsins with optical tools to stimulate,
or silence, defined neuronal populations with millisecond
precision (Deisseroth, 2015), optogenetics has provided a bulk
of important insights into the distinct role of defined neuronal
populations. Optogenetics represents an invaluable tool also
to interrogate the astrocyte response to different neuronal
type-specific signaling. Light stimulation of channel-rhodopsin 2
(ChR2), the most commonly used opsin, opens a cation-
permeable channel that in neurons evokes action-potential
firing. If ChR2 is targeted to astrocytes, light stimulation
leads to Ca2+ elevations that trigger gliotransmitter release,
including ATP or glutamate (for review see Ji and Wang, 2015).
Gourine et al. revealed that in the brain stem, astrocyte Ca2+

transients induced by optogenetic light stimulation could control
breathing through ATP release (Gourine et al., 2010). In visual
cortex, instead, astrocyte optogenetic stimulation modulated
neuronal activity via metabotropic glutamate receptors affecting
neuronal integration of visual stimuli (Perea et al., 2014).
Very recently, Archaerhodopsin (Arch), an inhibitory opsin
commonly used to hyperpolarize neurons, was also used in
the somatosensory cortex to evoke astrocytic Ca2+ elevations
in vivo (Poskanzer and Yuste, 2016). Although the mechanism
of the Ca2+ response to optogenetic astrocyte activation with
Arch was not univocally identified, the authors reported that
activated astrocytes release glutamate and modulate slow cortical
oscillations in vivo (Poskanzer and Yuste, 2016). In conclusion,
astrocyte optogenetic activation allowed a direct causal validation

TABLE 1 | New tools to study Ca2+ dynamics in astrocytes.

Advantages Disadvantages

Imaging techniques
2-photon and 3-photon microscopy Recording from cortical and subcortical

astrocytes (1 mm depth) in awake
animals (Horton et al., 2013; Perea
et al., 2014).

Imaging on deep structures (>1 mm
depth) not feasible.

Optical microendoscopes or microprisms Imaging of deep brain (>1 mm depth)
areas (Chia and Levene, 2009).

Invasive, potential damage and
inflammation of the imaged brain region.

Ca2+ sensitive dyes
Genetically-Encoded calcium indicators (GECIs) Ca2+ activity at the distal fine astrocytic

processes can be monitored (Srinivasan
et al., 2015).
Several tools (cre-lox system, viral
vectors, in utero electroporation) to
express GECIs in specific brain areas
(Paukert et al., 2014; Gee et al., 2015;
Srinivasan et al., 2015).

Several factors (expression techniques,
promoter sequences) are critical for a
good signal to noise signal.
Potential cytotoxicity.

Manipulation of astrocyte activity
Chemogenetics (DREADD, KORD) Specific activation mediated by

designed drug (Urban and Roth, 2015).
Receptor activation takes several
minutes and can last for hours (Guettier
et al., 2009; Vardy et al., 2015).

Not suitable for fast astrocytic
activation.
DREADDs inhibiting astrocytic Ca2+

activity are still lacking.

Optogenetic (ChR2, Arch) Fast Ca2+ increase through opsins
(Deisseroth, 2015).
Optogenetic astrocyte activation
induces gliotransmitter release (Ji and
Wang, 2015).

Optogenetic evoked Ca2+ dynamics
differ from physiological activity
recorded in astrocytes.
Optogenetic stimulation can alter
internal pH eliciting unknown effects
(Nagel et al., 2003).
On demand inhibition of astrocyte Ca2+

activity still lacking.
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of previous studies reporting astrocyte regulation of slow cortical
oscillations (Fellin et al., 2009; Halassa et al., 2009; Poskanzer and
Yuste, 2011).

However, both chemogenetics and optogenetics have
drawbacks that must be taken into account (see Table 1).
The most relevant difficulty, with either optogenetics or
chemogenetics, is to induce a neuronal or astrocytic activity
that could mimic that observed under physiological conditions.
Furthermore, ChR2 is permeable to Na+, K+and H+ (Nagel
et al., 2003). Accordingly, ChR2 openings strongly depolarizes
astrocytic cell membrane and alters internal pH and Na+

content. These effects, that have been involved in ChR2-mediated
glutamate release from astrocytes (Sasaki et al., 2012; Beppu
et al., 2014), may also interfere with astrocyte physiology.
Another issue is the gene delivery of opsins or DREADDs
to astrocytes which is commonly achieved with viral vectors, a
technique that may also alter astrocyte physiological functions by
activating an inflammatory response and gliosis. Furthermore,
while optogenetics can be used not only to stimulate, but also
to inhibit neurons (a very useful approach when interrogating
neuronal networks, especially in awake animals) an effective
inhibition of astrocyte Ca2+ signaling by optogenetic tools
has been not achieved yet. Inhibition of astrocyte Ca2+ signal
can be obtained through BAPTA-mediated Ca2+ chelation
(Gómez-Gonzalo et al., 2010), by depleting intracellular
Ca2+ stores with sarco/endoplasmic recticulum Ca2+ ATPase
(SERCA) pump inhibitors, such as cyclopiazonic acid (CPA),
or by using a transgenic mouse lacking IP3 receptors in
astrocytes (Srinivasan et al., 2015). Alternatively, expression
of Pleckstrin Homology (PH) domain of Phospholipase C
(PLC)-like protein p130 (p130PH) via viral vectors was used
to reduce Ca2+ signaling in astrocytes in vivo (Xie et al., 2010).
While all these approaches provided important information
on astrocyte functions, they are limited by drawbacks (Serrano
et al., 2006; Jourdain et al., 2007; Gómez-Gonzalo et al., 2010).
Accordingly, although the development of novel tools to

obtain on demand rapid and effective silencing of astrocyte
Ca2+ signals is highly desired, such implements have yet to
come.

CONCLUSIONS

Almost a century of neuron-centric research has left a deep gap
in our knowledge of astrocyte physiology. The role of astrocytes
in brain function and dysfunction emerged as a major topic in
neuroscience in the last decade after the recognition of their
dynamic modulation of synaptic functions and the evidence of
their involvement in the early stages of neurological disorders,
including epilepsy, ischemia, Alzheimer’s and Parkinson’s
diseases (Barres, 2008; Allaman et al., 2011; Losi et al., 2012;
Pekny et al., 2016) making astrocytes attractive targets for novel
therapeutic strategies. The study of the role of astrocytes in the
brain requires specifically designed experimental approaches due
to the distinct morphology and the unique functional properties
of astrocytes. Tailoring novel molecular tools for astrocytes, such
as chemogenetics and optogenetics, combined with the most
advanced Ca2+ imaging techniques in vivo, will allow greater
understanding of astrocyte functions in the brain.
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