455 research outputs found

    Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud NLS1s

    Get PDF
    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ\gamma-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.Comment: 9 pages, 5 figures, 4 tables. Accepted for publication in Astronomy & Astrophysic

    In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Get PDF
    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions

    Upper extremity freezing and dyscoordination in Parkinson\u27s disease: Effects of amplitude and cadence manipulations

    Get PDF
    Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE) coordination as measured by the phase coordination index (PCI)—only previously measured in gait—and freezing of the upper extremity (FO-UE) in people with Parkinson's disease (PD) who experience freezing of gait (PD + FOG), do not experience FOG (PD-FOG), and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q) were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms

    Generation of orthotopic patient-derived xenografts from gastrointestinal stromal tumor.

    Get PDF
    BackgroundGastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease.MethodsFresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed.ResultsHerein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473 ± 695-mm³ (median 199-mm3, range 12.6-2682.5-mm³) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also demonstrated that these tumors are FDG-avid on PET imaging, while immunohistochemically and histologically the PDXs resembled the primary tumors.ConclusionsWe report the first orthotopic model of human GIST using patient-derived tumor tissue. This novel, reproducible in vivo model of human GIST may enhance the study of GIST biology, biomarkers, personalized cancer treatments, and provide a preclinical platform to evaluate new therapeutic agents for GIST

    Slow Catastrophes, Uncertain Revivals

    Get PDF
    A collection of research-based stories about the future, proudly published by Project Hieroglyph. The book features stories created by students in “Slow Catastrophes, Speculative Futures, Science & Imagination: Rewriting and Rethinking Sustainability,” a course designed and taught by Dr. Michele Speitz at Furman University in South Carolina. The course and the stories in this volume were inspired by Project Hieroglyph, particularly by our first anthology, Hieroglyph: Stories and Visions for a Better Future (2014), which the students read and discussed throughout the course – along with a wealth of scholarly readings on sustainability, ecocriticism, international development, narrative, and ecology. The book is edited by Michele Speitz and Joey Eschrich, and designed by Ariel Shamas. It features stories from Graham Browning, Anna Peterson, Elisa Edmonson, Elly Gay, and Hagan Capnerhurst

    IXPE Mission System Concept and Development Status

    Get PDF
    The Goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mi SMEX), is to expand understanding of high-energy astrophysical processes and sources, in support of NASAs first science objective in Astrophysics: Discover how the universe works. IXPE, an international collaboration, will conduct X-ray imaging polarimetry for multiple categories of cosmic X-ray sources such as neutron stars, stellar-mass black holes, supernova remnants and active galactic nuclei. The Observatory uses a single science operational mode capturing the X-ray data from the targets. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three X-ray telescopes each consisting of a polarization-sensitive, gas pixel X-ray detector, paired with its corresponding grazing incidence mirror module assembly (MMA). A deployable boom provides the correct separation (focal length) between the detector units (DU) and MMAs. These payload elements are supported by the IXPE spacecraft which is derived from the BCP-small spacecraft architecture. This paper summarizes the IXPE mission science objectives, updates the Observatory implementation concept including the payload and spacecraft ts and summarizes the mission status since last years conference

    NGC 2207/IC 2163: A Grazing Encounter with Large Scale Shocks

    Get PDF
    Radio continuum, Spitzer infrared, optical and XMM-Newton X-ray and UVM2 observations are used to study large-scale shock fronts, young star complexes, and the galactic nuclei in the interacting galaxies NGC 2207/IC 2163. There are two types of large-scale shock fronts in this galaxy pair. The shock front along the rim of the ocular oval in IC 2163 has produced vigorous star formation in a dusty environment. In the outer part of the companion side of NGC 2207, a large-scale front attributed to disk or halo scraping is particularly bright in the radio continuum but not in any tracers of recent star formation or in X-rays. This radio continuum front may be mainly in the halo on the back side of NGC 2207 between the two galaxies. Values of the flux density ratio S(8 um)/S(6 cm) of kpc-sized, Spitzer IRAC star-forming clumps in NGC 2207/IC 2163 are compared with those of giant H II regions in M81. We find evidence that in 2001 a radio supernova was present in the core of feature i, a mini-starburst on an outer arm of NGC 2207. X-ray emission is detected from the NGC 2207 nucleus and from nine discrete sources, one of which corresponds to SN 1999ec, and another may be a radio supernova or a background quasar. The X-ray luminosity and X-ray spectrum of the NGC 2207 nucleus suggests it is a highly absorbed, low luminosity AGN.Comment: 30 pages, including 12 embedded eps figure

    Investigating Multiple Candidate Genes and Nutrients in the Folate Metabolism Pathway to Detect Genetic and Nutritional Risk Factors for Lung Cancer

    Get PDF
    Purpose: Folate metabolism, with its importance to DNA repair, provides a promising region for genetic investigation of lung cancer risk. This project investigates genes (MTHFR, MTR, MTRR, CBS, SHMT1, TYMS), folate metabolism related nutrients (B vitamins, methionine, choline, and betaine) and their gene-nutrient interactions. Methods: We analyzed 115 tag single nucleotide polymorphisms (SNPs) and 15 nutrients from 1239 and 1692 non-Hispanic white, histologically-confirmed lung cancer cases and controls, respectively, using stochastic search variable selection (a Bayesian model averaging approach). Analyses were stratified by current, former, and never smoking status. Results: Rs6893114 in MTRR (odds ratio [OR] = 2.10; 95% credible interval [CI]: 1.20–3.48) and alcohol (drinkers vs. non-drinkers, OR = 0.48; 95% CI: 0.26–0.84) were associated with lung cancer risk in current smokers. Rs13170530 in MTRR (OR = 1.70; 95% CI: 1.10–2.87) and two SNP*nutrient interactions [betaine*rs2658161 (OR = 0.42; 95% CI: 0.19–0.88) and betaine*rs16948305 (OR = 0.54; 95% CI: 0.30–0.91)] were associated with lung cancer risk in former smokers. SNPs in MTRR (rs13162612; OR = 0.25; 95% CI: 0.11–0.58; rs10512948; OR = 0.61; 95% CI: 0.41–0.90; rs2924471; OR = 3.31; 95% CI: 1.66–6.59), and MTHFR (rs9651118; OR = 0.63; 95% CI: 0.43–0.95) and three SNP*nutrient interactions (choline*rs10475407; OR = 1.62; 95% CI: 1.11–2.42; choline*rs11134290; OR = 0.51; 95% CI: 0.27–0.92; and riboflavin*rs8767412; OR = 0.40; 95% CI: 0.15–0.95) were associated with lung cancer risk in never smokers. Conclusions: This study identified possible nutrient and genetic factors related to folate metabolism associated with lung cancer risk, which could potentially lead to nutritional interventions tailored by smoking status to reduce lung cancer risk
    corecore