49 research outputs found

    Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art

    Get PDF
    One of the main problems connected to the conservation of street art is the selective removal of overlying undesired graffiti, i.e., drawings and tags. Unfortunately, selective and controlled removal of graffiti and overpaintings from street art is almost unachievable using traditional methodologies. Recently, the use of nanofluids confined in highly retentive pHEMA/PVP semi-interpenetrated polymer networks was proposed. Here, we report on the selective removal of acrylic overpaintings from a layer of acrylic paint on mortar mockups in laboratory tests. The results of the cleaning tests were characterized by visual and photographic observation, optical microscopy, and FT-IR microreflectance investigation. It was shown that this methodology represents a major advancement with respect to the use of nonconfined neat solvent

    Venom from Cuban Blue Scorpion has tumor activating effect in hepatocellular carcinoma

    Get PDF
    Complementary and alternative medicine (CAM) is the term used to describe many kinds of products, practices, and systems that are not part of conventional medicine. Cancer patients usually do everything they can to combat the disease, manage its symptoms, and cope with the side effects of treatment. Unfortunately, patients who use CAM underestimate the risk of interaction with cancer therapy or worse they omit conventional therapy thus reducing the possibility of cancer remission. Herein we analyzed the effects of Vidatox 30 CH (venom extracted from the Junceus Rhopalurus scorpion) on hepatocellular carcinoma (HCC), the second leading cause of cancer-related deaths. We found out that Vidatox increases HCC proliferation and invasion whereas it does not seem to interact with sorafenib, the orally active multikinase inhibitor approved for the treatment of advanced hepatocellular carcinoma. Our results suggest that the concentration of Vidatox used in the present study has not anti-neoplastic effects and care must be taken in hiring Vidatox in patients with HCC

    Nanomaterials for the cleaning and pH adjustment of vegetable tanned leather

    Get PDF
    Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on ageing and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study the cleaning of historical leather samples was optimized by confining an oil-in-water (o/w) nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using Scanning Electron Microscopy (FE SEM), controlled environment dynamic mechanical analysis (DMA-RH), and infrared spectroscopy (ATR-FTIR). The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts

    The OpenAIRE Research Community Dashboard: On blending scientific workflows and scientific publishing

    Get PDF
    First Online 30 August 2019Despite the hype, the effective implementation of Open Science is hindered by several cultural and technical barriers. Researchers embraced digital science, use “digital laboratories” (e.g. research infrastructures, thematic services) to conduct their research and publish research data, but practices and tools are still far from achieving the expectations of transparency and reproducibility of Open Science. The places where science is performed and the places where science is published are still regarded as different realms. Publishing is still a post-experimental, tedious, manual process, too often limited to articles, in some contexts semantically linked to datasets, rarely to software, generally disregarding digital representations of experiments. In this work we present the OpenAIRE Research Community Dashboard (RCD), designed to overcome some of these barriers for a given research community, minimizing the technical efforts and without renouncing any of the community services or practices. The RCD flanks digital laboratories of research communities with scholarly communication tools for discovering and publishing interlinked scientific products such as literature, datasets, and software. The benefits of the RCD are show-cased by means of two real-case scenarios: the European Marine Science community and the European Plate Observing System (EPOS) research infrastructure.This work is partly funded by the OpenAIRE-Advance H2020 project (grant number: 777541; call: H2020-EINFRA-2017) and the OpenAIREConnect H2020 project (grant number: 731011; call: H2020-EINFRA-2016-1). Moreover, we would like to thank our colleagues Michele Manunta, Francesco Casu, and Claudio De Luca (Institute for the Electromagnetic Sensing of the Environment, CNR, Italy) for their work on the EPOS infrastructure RCD; and Stephane Pesant (University of Bremen, Germany) his work on the European Marine Science RCD
    corecore