29 research outputs found

    Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids

    Get PDF
    Two selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7d before harvest at 0, 5, 10 and 20 mg Se per plant. Selenium levels were up to 1,200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2-3 fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots). The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 \uf06dM selenate for one week. Selenate treatment led to a 20-30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7-15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr) and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 \uf06dg) after a single foliar spray of 5 mg selenate per plant or one week of 5-10 \uf06dM selenate supply in hydroponics. The radishes metabolized selenate to the anticarcinogenic compound Se-methyl-selenocysteine. Selenate treatment enhanced levels of other nutraceuticals in radish roots, including glucoraphanin. Therefore, Se biofortification can produce plants with superior health benefit

    Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis

    Get PDF
    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations

    Screening for Mild Cognitive Impairment in Parkinson's Disease: Comparison of the Italian Versions of Three Neuropsychological Tests

    Get PDF
    Mild cognitive impairment (MCI) is frequent in Parkinson's disease (PD). Recently proposed criteria for MCI in PD (PD-MCI) indicate level I diagnosis based on abbreviated assessment and level II based on comprehensive neuropsychological evaluation. The study explored the sensitivity and specificity of the Italian versions of three neuropsychological tests for level I diagnosis of PD-MCI. We recruited 100 consecutive PD patients. After screening for inclusion criteria, 43 patients were included. The sensitivity and specificity of the Mini Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Addenbrooke's Cognitive Examination Revised (ACE-R) in comparison to level II diagnosis of PD-MCI were examined. PD-MCI was diagnosed (level II) in 51% of patients. Disease duration was significantly longer and PD motor scales were more severely impaired in MCI group. The receiver-operator characteristics curve documented nonsignificant difference in the performance of the three tests, with slight advantage of MMSE (corrected data). The time of administration favored MMSE. In Italian-speaking PD patients, MMSE might represent a good screening tool for PD-MCI, because of the shorter time of administration and the performance comparable to those of MoCA and ACE-R. Further studies are needed to validate the new PD-MCI criteria across different languages and cultures

    Screening for Mild Cognitive Impairment in Parkinson’s Disease: Comparison of the Italian Versions of Three Neuropsychological Tests

    Get PDF
    Mild cognitive impairment (MCI) is frequent in Parkinson’s disease (PD). Recently proposed criteria for MCI in PD (PD-MCI) indicate level I diagnosis based on abbreviated assessment and level II based on comprehensive neuropsychological evaluation. The study explored the sensitivity and specificity of the Italian versions of three neuropsychological tests for level I diagnosis of PD-MCI. We recruited 100 consecutive PD patients. After screening for inclusion criteria, 43 patients were included. The sensitivity and specificity of the Mini Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Addenbrooke’s Cognitive Examination Revised (ACE-R) in comparison to level II diagnosis of PD-MCI were examined. PD-MCI was diagnosed (level II) in 51% of patients. Disease duration was significantly longer and PD motor scales were more severely impaired in MCI group. The receiver-operator characteristics curve documented nonsignificant difference in the performance of the three tests, with slight advantage of MMSE (corrected data). The time of administration favored MMSE. In Italian-speaking PD patients, MMSE might represent a good screening tool for PD-MCI, because of the shorter time of administration and the performance comparable to those of MoCA and ACE-R. Further studies are needed to validate the new PD-MCI criteria across different languages and cultures

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Il "linguaggio telematico" al di lĂ  degli schemi della lingua scritta

    No full text
    La ricerca della significativitĂ  avvicina la lingua dei messaggi telematici alla lingua orale

    Brain 18F-FDG and 18F-Flumetamol PET Imaging of Fragile X-Associated Tremor Ataxia Syndrome

    No full text
    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a rare movement disorder caused by a 55-to-200 CGG-trinucleotide expansion premutation in the FMR1 gene. Core diagnostic criteria are tremor, ataxia, and T2-weighted hyperintensity of the middle cerebellar peduncles on MRI, but FXTAS encompass a broad spectrum of neurological symptoms. FXTAS pathophysiology is largely unknown, and some animal models and neuropathology findings suggest possible overlap with Alzheimer disease. We report the combined PET imaging of a genetically confirmed FXTAS patient, presenting reduced temporal-frontal 18F-FDG uptake, and pathological cortical deposition of amyloid to 18F-flumetamol PET scan. This report may offer clues to FXTAS pathophysiology

    Effect of alfalfa plant-derived biostimulant on sulfur transporters in tomato plants.

    No full text
    The excessive use of chemical fertilizers has affected soil and water quality causing the reduction of organic matter content in soils and the increase of nitrates in waters. Organic products known as "biostimulants" could be used in agricultural practices to promote plant growth and mineral nutrient uptake. Previous studies showed that applications of a Medicago sativa L. hydrolysate-based biostimulant (EM) to maize plants stimulated the main metabolic pathways, such as nitrogen assimilation and the tricarboxylic acid cycle, as well as the secondary metabolism associated with the synthesis of phenylpropanoids. In order to evaluate whether EM could also influence sulfur (S) metabolism, the content of S, glutathione (GSH) and the expression of genes involved in S transport were analyzed in tomato plants cv. Micro-Tom treated with the biostimulant. Furthermore, the expression of genes coding for enzymes that use GSH as a substrate in redox reactions (glutathione reductase, GSR2, and glutathione peroxidase, GPX) was assayed. Plants were cultivated in hydroponics in the presence of EM at the dosages of 0.1 or 1.0 ml l(-1). The application of EM to tomato significantly stimulated sulfur accumulation in plants, and in roots the increase was dose-dependent. Interestingly, in roots the level of glutathione concomitantly decreased. qRT-PCR experiments evidenced the up-regulation of genes coding for sulfate transporters (ST1 and ST2) in plants supplied with EM, especially when the biostimulant was furnished at 0.1 ml l(-1). The same trend was observed for the GSR2 gene in leaves. The transcript accumulation of GSR2 and GPX in roots was maximal in plants treated with 1 ml l(-1) EM. The results obtained suggest a positive role of EM on sulfur transport in tomato plants, and are consistent with previous studies where the enhancement of nitrogen metabolism by EM was reported. The concomitant stimulation of S and N nutrition by EM is likely due to the fact that the pathways of these nutrients in plants are highly inter-related. The increase of GSR2 and GPX transcript level suggests a role for EM to supporting plants to overcome stress by inducing antioxidant enzyme activity
    corecore