38 research outputs found

    Hepcidin antagonists for potential treatments of disorders with hepcidin excess

    Get PDF
    5noThe discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.openopenMaura, Poli; Michela, Asperti; Paola, Ruzzenenti; Maria, Regoni; Paolo, ArosioPoli, Maura; Asperti, Michela; Ruzzenenti, Paola; Regoni, Maria; Arosio, Paol

    Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin-Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios

    Get PDF
    Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery

    Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation

    Get PDF
    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression

    Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains

    Get PDF
    This article has been accepted for publication in Protein Engineering design and Selection Published by Oxford University Press.Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.This work is partially financed by the Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB) and the Doctoral School of the National Institute of Applied Sciences and Technology (INSAT-Tunis) – University of Carthage

    Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity

    Get PDF
    15noMitochondrial ferritin is a functional ferritin that localizes in themitochondria.Itisexpressedinthetestis, heart,brain,and cells with active respiratory activity. Its overexpression in culturedcellsprotectedagainstoxidativedamageandreduced cytosolic iron availability. However, no overt phenotype was describedinmicewithinactivationoftheFtMtgene.Here,we usedthe doxorubicin model ofcardiac injuryina novel strain of FtMt-null mice to investigate the antioxidant role of FtMt. These mice did not show any evident phenotype, but after acute treatment to doxorubicin, they showed enhanced mortalityandaltered heartmorphologywithfibrildisorganization and severe mitochondrial damage. Signs of mitochondrial damage were present also in mock-treated FtMt−/− mice. The hearts of saline- and doxorubicin-treated FtMt−/− mice had higher thiobarbituric acid reactive substance levels, heme oxygenase 1 expression, and protein oxidation, but did not differ from FtMt+/+ in the cardiac damage marker B-type natriureticpeptide(BNP),ATP levels, and apoptosis.However,the autophagy marker LC3 was activated. The results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of heart mitochondria to the toxicity of doxorubicin. This study represents the first in vivo evidence of the antioxidant role of FtMt.openopenMaccarinelli, Federica; Gammella, Elena; Asperti, Michela; Mariaregon, ; Donetti, Elena; Recalcati, Stefania; Poli, Maura; Finazzi, Dario; Arosio, Paolo; Biasiotto, Giorgio; Emiliaturco, ; Altruda, Fiorella; Lonardi, Silvia; Cornaghi, Laura; Cairo, GaetanoMaccarinelli, Federica; Gammella, Elena; Asperti, Michela; Mariaregon, ; Donetti, Elena; Recalcati, Stefania; Poli, Maura; Finazzi, Dario; Arosio, Paolo; Biasiotto, Giorgio; Emiliaturco, ; Altruda, Fiorella; Lonardi, Silvia; Cornaghi, Laura; Cairo, Gaetan

    Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors

    Get PDF
    In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling

    The Antitumor Didox Acts as an Iron Chelator in Hepatocellular Carcinoma Cells

    No full text
    Ribonucleotide reductase (RR) is the rate-limiting enzyme that controls the deoxynucleotide triphosphate synthesis and it is an important target of cancer treatment, since it is expressed in tumor cells in proportion to their proliferation rate, their invasiveness and poor prognosis. Didox, a derivative of hydroxyurea (HU), is one of the most potent pharmaceutical inhibitors of this enzyme, with low in vivo side effects. It inhibits the activity of the subunit RRM2 and deoxyribonucleotides (dNTPs) synthesis, and it seems to show iron-chelating activity. In the present work, we mainly investigated the iron-chelating properties of didox using the HA22T/VGH cell line, as a model of hepatocellular carcinoma (HCC). We confirmed that didox induced cell death and that this effect was suppressed by iron supplementation. Interestingly, cell treatments with didox caused changes of cellular iron content, TfR1 and ferritin levels comparable to those caused by the iron chelators, deferoxamine (DFO) and deferiprone (DFP). Chemical studies showed that didox has an affinity binding to Fe3+ comparable to that of DFO and DFP, although with slower kinetic. Structural modeling indicated that didox is a bidentated iron chelator with two theoretical possible positions for the binding and among them that with the two hydroxyls of the catechol group acting as ligands is the more likely one. The iron chelating property of didox may contribute to its antitumor activity not only blocking the formation of the tyrosil radical on Tyr122 (such as HU) on RRM2 (essential for its activity) but also sequestering the iron needed by this enzyme and to the cell proliferation

    Inhibition of glutathione peroxidase 4 primes mouse C2C12 myoblasts and rhabdomyosarcoma cell lines to ferroptosis

    No full text
    Ferroptosis is a recently discovered form of cell death causally linked to the ability of iron to induce oxidative damage by peroxidation of polyunsaturated fatty acids (PUFAs). Misregulated ferroptosis has been implicated in a number of pathological processes and there is a growing interest in the pre-clinical use of ferroptosis inducers against tumors. Cells to prevent ferroptosis mostly engage in the activity of glutathione peroxidase 4 (GPx4), a selenoenzyme that uses glutathione for neutralizing lipid hydroperoxides. Two major ferroptosis inducers mediating GPx4 inhibition have been identified, namely Erastin (eradicator of RAS and ST-expressing cells) and RSL3 (RAS selective Lethal 3). In this work we have investigated their effect on mouse skeletal C2C12 myoblasts and cell lines of rhabdomyosarcoma (RMS), the most frequent soft-tissue tumor affecting children and adolescents. As evaluated by using specific fluorescent probes, treatment with Erastin or RSL3 agents resulted in a marked production of both cytoplasmic/mitochondrial ROS and lipid ROS, which correlated in a dose-dependent manner with a decreased cell viability, as evaluated by means of Neutral Red assays after 48 hours. In Erastin-treated cell lines ferroptosis was enhanced in the presence of iron supplementation (through ferric ammonium citrate), while it was prevented by pre-treatment with agents sequestering iron (bathophenanthrolinedisulfonic acid), antioxidant scavengers (glutathione and N-acetylcysteine) and lipid ROS scavengers (ferrostatin-1). We observed Erastin to be more effective to promote ferroptosis in the cell lines showing a higher proliferation rate. Indeed, inhibition of ERK signaling, as observed during differentiation or upon pharmacological treatment with PD090859 agent, prevented ferroptosis in Erastin-treated human RMS embryonal RD and C2C12 cell lines. Furthermore, we found Erastin and RSL3 to be more effective in inducing ferroptosis in RD subclones characterized by higher ERK1/2 phosphorylation and proliferation rate. Taken together, our data suggest that iron metabolism could play a key role in the cell fate of muscle cells; in addition, the use of ferroptotic inducers could offer a novel alternative to improve the efficacy of conventional antineoplastic cocktails utilized against RMS
    corecore