130 research outputs found

    Diversity, Coding, and Multiplexing Trade-Off of Network-Coded Cooperative Wireless Networks

    Full text link
    In this paper, we study the performance of network-coded cooperative diversity systems with practical communication constraints. More specifically, we investigate the interplay between diversity, coding, and multiplexing gain when the relay nodes do not act as dedicated repeaters, which only forward data packets transmitted by the sources, but they attempt to pursue their own interest by forwarding packets which contain a network-coded version of received and their own data. We provide a very accurate analysis of the Average Bit Error Probability (ABEP) for two network topologies with three and four nodes, when practical communication constraints, i.e., erroneous decoding at the relays and fading over all the wireless links, are taken into account. Furthermore, diversity and coding gain are studied, and advantages and disadvantages of cooperation and binary Network Coding (NC) are highlighted. Our results show that the throughput increase introduced by NC is offset by a loss of diversity and coding gain. It is shown that there is neither a coding nor a diversity gain for the source node when the relays forward a network-coded version of received and their own data. Compared to other results available in the literature, the conclusion is that binary NC seems to be more useful when the relay nodes act only on behalf of the source nodes, and do not mix their own packets to the received ones. Analytical derivation and findings are substantiated through extensive Monte Carlo simulations.Comment: IEEE International Conference on Communications (ICC), 2012. Accepted for publication and oral presentatio

    Closed-Form Error Probability of Network-Coded Cooperative Wireless Networks with Channel-Aware Detectors

    No full text
    International audienceIn this paper, we propose a simple analytical methodology to study the performance of multi-source multi-relay cooperative wireless networks with network coding at the relay nodes and Maximum-Likelihood (ML-) optimum channel-aware detectors at the destination. Channel-aware detectors are a broad class of receivers that account for possible decoding errors at the relays, and, thus, are inherently designed to mitigate the effect of erroneous forwarded and network-coded data. In spite of the analytical complexity of the problem at hand, the proposed framework turns out to be simple enough yet accurate and insightful to understand the behavior of the system, and, in particular, to capture advantages and disadvantages of various network codes and the impact of error propagation on their performance. It is shown that, with the help of cooperation, some network codes are inherently more robust to decoding errors at the relays, while others better exploit the inherent spatial diversity and redundancy provided by cooperative networking. Finally, theory and simulation highlight that the relative advantage of a network code with respect to the others might be different with and without decoding errors at the relays

    On the Diversity Order and Coding Gain of Multi-Source Multi-Relay Cooperative Wireless Networks with Binary Network Coding

    Full text link
    In this paper, a multi-source multi-relay cooperative wireless network with binary modulation and binary network coding is studied. The system model encompasses: i) a demodulate-and-forward protocol at the relays, where the received packets are forwarded regardless of their reliability; and ii) a maximum-likelihood optimum demodulator at the destination, which accounts for possible demodulations errors at the relays. An asymptotically-tight and closed-form expression of the end-to-end error probability is derived, which clearly showcases diversity order and coding gain of each source. Unlike other papers available in the literature, the proposed framework has three main distinguishable features: i) it is useful for general network topologies and arbitrary binary encoding vectors; ii) it shows how network code and two-hop forwarding protocol affect diversity order and coding gain; and ii) it accounts for realistic fading channels and demodulation errors at the relays. The framework provides three main conclusions: i) each source achieves a diversity order equal to the separation vector of the network code; ii) the coding gain of each source decreases with the number of mixed packets at the relays; and iii) if the destination cannot take into account demodulation errors at the relays, it loses approximately half of the diversity order.Comment: 35 pages, submitted as a Journal Pape

    Flexible Network Codes Design for Cooperative Diversity

    Get PDF
    ISBN 978-953-307-183-1In this book chapter, we have proposed UEP coding theory for the flexible design of network codes for multi-source multi-relay cooperative networks. The main advantage of the proposed method with respect to state-of-the-art solutions is the possibility of assigning the diversity gain of each user individually. This offers a great flexibility for the efficient design of network codes for cooperative networks, as energy consumption, performance, number of time-slots required to achieve the desired diversity gain, and complexity at the relay nodes for performing NC can be traded-off by taking into account the specific and actual needs of each source, and without the constraint of over-engineering (e.g., working in a larger Galois field or using more time-slots than actually required) the system according to the needs of the source requesting the highest diversity gain

    Pro/Anti-Inflammatory Cytokine Imbalance in Postischemic Left Ventricular Remodeling

    Get PDF
    Objectives. Cytokines play an important role in left ventricular remodeling consequent to myocardial ischemia. The aim of this study was to correlate cytokine production and lymphocyte apoptosis to post-ischemic left ventricular remodeling in patients affected by acute myocardial infarction (AMI) undergoing primary cutaneous angioplasty (PCI). Methods. In 40 patients, affected by AMI and undergoing PCI, we evaluated peripheral blood mononuclear cells (PBMCs), tumor necrosis factor-alpha (TNF-α) and interleukin 10 (IL10) production and apoptosis on day 1, day 3, day 7, 1 month and 6 months after PCI. Patients were divided into two subgroups of remodeling or not remodeling by echocardiographic criteria. Results. In the subgroup of remodeling patients, at each timepoint TNF-α production was increased significantly in comparison with the subgroup of not remodeling patients. IL10 production was statistically lower in remodeling subjects than in not remodeling ones 1 and 6 months after reperfusion. There were no differences between the two groups as regards lymphomonocyte apoptosis. Conclusions. We found an increased production of pro-inflammatory cytokine TNF-α and a corresponding decrease of anti-inflammatory/regulatory cytokine IL10 in remodeling patients and we concluded that this cytokine imbalance resulted in pro-inflammatory effects which might contribute to the progression of left ventricular remodeling

    Short fractionation radiotherapy for early prostate cancer in the time of COVID-19: long-term excellent outcomes from a multicenter Italian trial suggest a larger adoption in clinical practice

    Get PDF
    Abstract Introduction: To evaluate stereotactic body radiotherapy (SBRT) in low-risk Prostate Cancer patients as preferred treatment option in emergency health conditions. Materials and methods: From April 2013 to September 2015, 28 patients with low-risk prostate cancer were prospectively enrolled. The SBRT prescribed dose was 36.25 Gy in 5 fractions, twice a week. Primary endpoints were acute and late toxicity. Secondary endpoints were biochemical recurrence free survival (bRFS) and overall survival. Results: Median follow-up was 65.5 months (range 52-81). No acute G3 or G4 toxicity was recorded. Acute G1 or G2 genitourinary (GU) toxicity occurred in 43% and acute G1-G2 gastrointestinal (GI) toxicity in 14%. Late G1 and G3 GU toxicity in 18% and 3.5%, respectively. The G3 toxicity was not directly attributable to radiotherapy. Late G1 GI toxicity occurred in 18%. 5yy bRFS was 96.5% (95% CI 82.3-99.4%). Conclusions: Stereotactic body radiotherapy for early prostate cancer reported safe toxicity profile and a good clinical outcome at the median follow-up of 5 years. It may be an useful option if radiotherapy is required in emergency medical conditions

    Evaluation of quantitative fFn test in predicting the risk of preterm birth

    Get PDF
    To evaluate diagnostic accuracy of quantitative fetal fibronectin (qfFN) test in predicting preterm birth (PTB) risk <34 weeks' gestation or within 14 days from testing. We explored the predictive potential of the test in five-predefined PTB risk categories based on predefined qfFN thresholds (<10, 10-49, 50-199, 200-499 and ≄500 ng/mL)

    A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients. Final results of the GIMEMA LAL1509 protocol

    Get PDF
    The GIMEMA LAL1509 protocol, designed for adult (≄18-60 years) de novo Ph+ acute lymphoblastic leukemia patients, was based on a dasatinib plus steroids induction - with central nervous system prophylaxis - followed by dasatinib alone in patients in complete molecular response or chemotherapy and/or allogeneic transplantation in patients not reaching a complete molecular response. Sixty patients (median age 41.9 years) were enrolled: 33 were p190+, 18 p210+ and 9 p190/p210+. At the end of induction (day +85), 58 patients (97%) achieved a complete hematologic remission. No deaths in induction were recorded. Eleven patients (18.3%) obtained a complete molecular response. Among non-complete molecular responders (n=47), 22 underwent an allogeneic transplant. Seventeen hematologic relapses occurred (median 7 months, range 3-40.1), 13 during consolidation and 4 post-transplant. ABL1 mutations (5 T315I, 3 V299L, 1 E281K and 1 G254E) were found in 10/13 relapsed cases. With a median follow-up of 57.4 months (range: 4.2-75.6), overall survival and disease-free survival are 56.3% and 47.2%. A better diseasefree survival was observed in patients who obtained a molecular response at day +85 compared to cases who did not. The presence of additional copy number aberrations - IKZF1 plus CDKN2A/B and/or PAX5 deletions - was the most important unfavorable prognostic factor on overall and disease-free survival (p=0.005 and p=0.0008). This study shows that in adult Ph+ ALL long-term survivals can be achieved with a total-therapy strategy based on a chemo-free induction and, in complete molecular responders, also without further systemic chemotherapy. Finally, the screening of additional copy number aberrations should be included in the diagnostic work-up. EudraCT 2010-019119-39
    • 

    corecore