23 research outputs found

    The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathogens depend on peptidase activities to accomplish many physiological processes, including interaction with their hosts, highlighting parasitic peptidases as potential drug targets. In this study, a major leucyl aminopeptidolytic activity was identified in <it>Trypanosoma cruzi</it>, the aetiological agent of Chagas disease.</p> <p>Results</p> <p>The enzyme was isolated from epimastigote forms of the parasite by a two-step chromatographic procedure and associated with a single 330-kDa homohexameric protein as determined by sedimentation velocity and light scattering experiments. Peptide mass fingerprinting identified the enzyme as the predicted <it>T. cruzi </it>aminopeptidase EAN97960. Molecular and enzymatic analysis indicated that this leucyl aminopeptidase of <it>T. cruzi </it>(LAPTc) belongs to the peptidase family M17 or leucyl aminopeptidase family. LAPTc has a strong dependence on neutral pH, is mesophilic and retains its oligomeric form up to 80°C. Conversely, its recombinant form is thermophilic and requires alkaline pH.</p> <p>Conclusions</p> <p>LAPTc is a 330-kDa homohexameric metalloaminopeptidase expressed by all <it>T. cruzi </it>forms and mediates the major parasite leucyl aminopeptidolytic activity. Since biosynthetic pathways for essential amino acids, including leucine, are lacking in <it>T. cruzi</it>, LAPTc could have a function in nutritional supply.</p

    The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer

    Get PDF
    Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy

    A Reactive Model-based Programming Language for Robotic Space Explorers

    No full text
    Model-based autonomous agents have emerged recently as vital technologies in the development of highly autonomous reactive systems, particularly in the aerospace domain. These agents utilize many automated reasoning capabilities, but are complicated to use because of the variety of languages employed for each capability. To address this problem, we introduce model-based programming, a novel approach to designing embedded software systems. In particular, we introduce the Reactive Model-based Programming Language (RMPL), which provides a framework for constraint-based modeling, as well as a suite of reactive programming constructs. To convey the expressiveness of RMPL, we show how it captures the main features of synchronous programming languages and advanced robotic execution languages. This paper focuses on using the rich behavior modeling of RMPL to provide sequencing and robotic execution capabilities for spacecraft

    Gating of heteromeric retinal rod channels by cyclic AMP: role of the C-terminal and pore domains.

    Get PDF
    Cyclic nucleotide-gated channels are tetramers composed of homologous alpha and beta subunits. C-terminal truncation mutants of the alpha and beta subunits of the retinal rod channel were expressed in Xenopus oocytes, and analyzed for cGMP- and cAMP-induced currents (single-channel records and macroscopic currents). When the alpha subunit truncated downstream of the cGMP-binding site (alpha D608stop) is co-injected with truncated beta subunits, the heteromeric channels present a drastic increase of cAMP sensitivity. A partial effect is observed with heteromeric alpha R656stop-containing channels, while alpha K665stop-containing channels behave like alpha wt/beta wt. The three truncated alpha subunits have wild-type activity when expressed alone. Heteromeric channels composed of alpha wt or truncated alpha subunits and chimeric beta subunits containing the pore domain of the alpha subunit have the same cAMP sensitivity as alpha-only channels. The results disclose the key role of two domains distinct from the nucleotide binding site in the gating of heteromeric channels by cAMP: the pore of the beta subunit, which has an activating effect, and a conserved domain situated downstream of the cGMP-binding site in the alpha subunit (I609-K665), which inhibits this effect

    cAMP and Vfr Control Exolysin Expression and Cytotoxicity of Pseudomonas aeruginosa Taxonomic Outliers

    No full text
    International audienceThe two-partner secretion system ExlBA, expressed by strains of Pseu-domonas aeruginosa belonging to the PA7 group, induces hemorrhage in lungs due to disruption of host cellular membranes. Here we demonstrate that the exlBA genes are controlled by a pathway consisting of cAMP and the virulence factor regulator (Vfr). Upon interaction with cAMP, Vfr binds directly to the exlBA promoter with high affinity (equilibrium binding constant [K eq ] of 2.5 nM). The exlB and exlA expression was diminished in the Vfr-negative mutant and upregulated with increased intracel-lular cAMP levels. The Vfr binding sequence in the exlBA promoter was mutated in situ, resulting in reduced cytotoxicity of the mutant, showing that Vfr is required for the exlBA expression during intoxication of epithelial cells. Vfr also regulates function of type 4 pili previously shown to facilitate ExlA activity on epithelial cells, which indicates that the cAMP/Vfr pathway coordinates these two factors needed for full cy-totoxicity. As in most P. aeruginosa strains, the adenylate cyclase CyaB is the main provider of cAMP for Vfr regulation during both in vitro growth and eukaryotic cell infection. We discovered that the absence of functional Vfr in the reference strain PA7 is caused by a frameshift in the gene and accounts for its reduced cytotoxicity, revealing the conservation of ExlBA control by the CyaB-cAMP/Vfr pathway in P. aeruginosa taxonomic outliers. IMPORTANCE The human opportunistic pathogen Pseudomonas aeruginosa provokes severe acute and chronic human infections associated with defined sets of vir-ulence factors. The main virulence determinant of P. aeruginosa taxonomic outliers is exolysin, a membrane-disrupting pore-forming toxin belonging to the two-partner secretion system ExlBA. In this work, we demonstrate that the conserved CyaB-cAMP/Vfr pathway controls cytotoxicity of outlier clinical strains through direct tran-scriptional activation of the exlBA operon. Therefore, despite the fact that the type III secretion system and exolysin are mutually exclusive in classical and outlier strains, respectively, these two major virulence determinants share similarities in their mechanisms of regulation

    Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis

    No full text
    ABSTRACT Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication
    corecore