47 research outputs found

    Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models

    Get PDF
    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates

    Climate variability along latitudinal and longitudinal transects in East Antarctica

    Get PDF
    AbstractIn the framework of the International Trans-Antarctic Scientific Expedition (ITASE) programme, France and Italy carried out a traverse along one west–east and two north–south transects in East Antarctica from November 2001 to January 2002. Eighteen shallow snow–firn cores were drilled, and surface snow samples were collected every 5km along the traverse. Firn temperatures were measured in boreholes down to 30 m. The cores were analyzed for β radioactivity to obtain snow accumulation-rate data. The surface snow samples were analyzed for δ18O to correlate isotopic values with borehole temperatures. Multiple regression analysis shows a global near-dry-adiabatic lapse rate and a latitudinal lapse rate of 1.05˚C(˚ lat. S)–1, in the Dome C drainage area. Analysis of firn temperatures reveals a super-adiabatic lapse rate along the ice divide between Talos Dome and the Southern Ocean coast, and in some sectors along the ice divide between the Astrolabe Basin and D59. Snow accumulation rates and firn temperatures show warmer temperatures and higher accumulation values close to the ice divides extending from Talos Dome and Dome C to the Southern Ocean. The spatial pattern of data is linked with a katabatic-wind-source basin and moisture-source region

    Evolution de la surface de neige sur le plateau Antarctique (observation in situ et satellite)

    Get PDF
    La surface de neige sur le Plateau Antarctique joue un rôle important dans l'étude du bilan de masse et d'énergie de surface. Ses caractéristiques dépendent des interactions entre les conditions atmosphériques et le haut du manteau neigeux, à travers notamment les précipitations, la redistribution de neige par le vent et le métamorphisme. L'ensemble des aspects de la surface, i.e. le type de cristaux, la rugosité, la densité, l'albédo , sont regroupés sous la formule état de surface. L'objectif de cette thèse est l'étude de l'état de surface et de son évolution, en fonction des conditions atmosphériques, à l'aide d'observations in situ et satellite. L'analyse conjointe d'observations in situ, essentiellement à partir de photographies infrarouges de la surface (développement d'un algorithme examinant la texture des images), et satellite, principalement l'émission micro-onde du manteau neigeux (utilisation du rapport de polarisation sensible à la densité proche de la surface), a permis de montrer une dynamique rapide de la surface à Dôme C. En particulier, des périodes où le givre recouvre entièrement la surface sont observées et représentent environ 45% du temps. Cette dynamique est aussi caractérisée par des élévations rapides et importantes de la surface, pouvant être largement supérieures à l'accumulation annuelle moyenne de 8 cm (jusqu'à 20 cm en 2 heures). Le vent est déterminant dans l'évolution de la surface. Plus particulièrement, ces travaux ont montrés l'importance de la direction du vent pour la disparition du givre (perpendiculaire à la direction dominante, i.e. le sud-ouest). Enfin, la corrélation entre présence de givre et rapport de polarisation a permis d'étendre ces résultats sur les 10 années d'observation du satellite et ouvre la voie à la détection des précipitations par télédétection. La modélisation de l'émission micro-onde à 19 et 37 GHz a ensuite été menée à Dôme C à l'aide d'un modèle de transfert radiatif (DMRT-ML). Les propriétés du manteau neigeux (taille des grains, densité et température), utilisées en entrée du modèle, ont été mesurées durant la campagne d'été 2010 - 2011. Les résultats des simulations montrent que la densité de la neige proche de la surface est principalement responsable des variations du rapport de polarisation. Cette densité a ainsi été inversée à Dôme C sur 10 ans. Elle montre une tendance pluriannuelle à la baisse de 10 kg m-3 a-1, superposée à un cycle annuel et à des variations journalières / hebdomadaires. La mesure in situ de la densité et l'observation du givre coïncident avec les variations rapides de la densité estimée. L'évolution pluriannuelle conséquente mérite d'être prise en compte pour l'étude du bilan de masse de surface, les causes probables étant une hausse des précipitations ou une baisse de l'intensité du vent. Suivant une méthodologie similaire, l'évolution de la densité de surface a été déduite pour l'ensemble de l'Antarctique. Les variations spatiales mettent en évidence une tendance claire à la diminution de la densité sur une grande région entre Dôme C et Vostok et une région à l'est de Dôme C où elle augmente. À plus grande échelle, le rapport de polarisation moyen montre de grandes variations, signatures de la stratification en densité du manteau neigeux. L'étude de l'altimétrie satellite permettrat de corroborer ces résultats.The snow surface on the Antarctic Plateau plays an important role to study the surface mass and energy balance. Its characteristics depend on interactions between the atmospheric conditions and the top of the snowpack such as snowfall, snow remobilization by the wind and metamorphism. All the surface characteristics like type of crystals, roughness, density, albedo are rounded up the expression surface state. Objective of this thesis is to study the surface state and its evolution due to atmospheric conditions, from satellite and in situ observations. Analyzing together in situ and satellite observations, respectively from infrared pictures of the snow surface (developing an algorithm to study the image texture) and microwave emission of snow (using the polarization ratio that principally depends on the snow density near the surface), showed that the surface quickly evolves at Dome C. Specifically, periods where hoar covers totally the surface are observed and represents around 45% of time. Surface evolution is also characterized by rapid and high increase of the surface height which could be widely higher than the mean annual accumulation of 8 cm (to 20 cm in 2 hours). The wind is essential for the snow surface evolution. Especially, these works showed that wind direction changes during the disappearance of hoar crystals (perpendicular to the prevailing direction, i.e. the Southwest). Finally, correlation between presence of hoar on the surface and polarization ratio extended these results for the 10 years of satellite observation. It shows the potential to detect precipitation events from passive microwave observation. Modeling microwave emission at 19 and 37 GHz was performed at Dome C by a radiative transfer model (DMRT-ML). Snowpack properties (grain size, density and temperature) used as model inputs were measured during the 2010 2011 summer field campaign. Simulations results showed that the snow density near the surface is mainly responsible of the variations of polarization ratio. Surface density was thus estimated at Dome C for 10 years. The density evolution show a multi-annual trend of 10 kg m-3 a-1 decreasing, superimposed by an annual cycle and daily / weekly variations. In situ measurements of density and hoar observation are coincident with the rapid evolutions of estimated density. The substantial multi-annual decrease of density should be included in surface mass balance study because the causes are probably an increase of precipitation or a decrease of wind speed. Similar method was used to deduce the evolution of the near-surface snow surface for whole Antarctica. Spatial variations bring out a clear decrease trend of surface density over a large area between Dome C and Vostok and an area in the East of Dome C where density increases. For the whole Antarctic, the mean polarization ratio shows large variations which correspond to variations of the density stratification of the snowpack. Spatial altimetry would be useful to confirm these results.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

    Get PDF
    Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr(-1) at DC to 20 mm w.e. yr(-1) at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr(-1) over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr(-1) (last 234 years) to 2 mm w.e. yr(-1) (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates

    The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Get PDF
    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml

    The International Trans-Arctic Scientific Expedition (ITASE): An Overview

    Get PDF
    From its original formulation in 1990 the International Trans-Antarctic Scientific Expedition (ITASE) has had as its primary aim the collection and interpretation of a continent-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. ITASE offers the ground-based opportunities of traditional-style traverse travel coupled with the modern technology of GPS, crevasse detecting radar, satellite communications and multidisciplinary research. By operating predominantly in the mode of an oversnow traverse, ITASE offers scientists the opportunity to experience the dynamic range of the Antarctic environment. ITASE also offers an important interactive venue for research similar to that afforded by oceanographic research vessels and large polar field camps, without the cost of the former or the lack of mobility of the latter. More importantly, the combination of disciplines represented by ITASE provides a unique, multidimensional (space and time) view of the ice sheet and its history. ITASE has now collected \u3e20 000km of snow radar, recovered more than 240 firn/ice cores (total length 7000 m), remotely penetrated to ~4000m into the ice sheet, and sampled the atmosphere to heights of \u3e20 km

    Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours

    No full text
    International audienceSurface melting duration and extent of the Antarctic coasts and ice-shelves is a climatic indicator related to the summer temperature and radiative budget. Surface melting is easily detectable by remote sensing using passive microwave observations. The preliminary goal of this study is to extend to 26 years an existing data set of surface melting [Torinesi, O., Fily, M., Genthon, C. (2003), Interannual variability and trend of the Antarctic summer melting period from 20 years of spaceborne microwave data, J. Climate, 16(7), pp. 1047–1060] by including the most recent years of observation. These data come from 4 microwave sensors (the Scanning Multichannel Microwave Radiometer (SMMR) and three Special Sensor Microwave Imager (SSM/I)) observing the surface at different hours of the day. Since surface melting varies throughout the day as the air temperature or the radiation, the interannual melting extent and duration time series are biased by sensor changes. Using all the sensors simultaneously available since 2002, we were able to model the diurnal variations of melting and use this hourly model to correct the long-term time series. This results in an unbiased 26-year long time series better suited for climate analysis. The cooling trend found by Torinesi et al. using uncorrected time series for the 1980–1999 period is confirmed but the decreasing rate is weaker after correction. Furthermore, extending the series up to summer 2004–2005 reveals recent changes: the last 2 summers have been particularly warmer over all the East Antarctica compared to the 10 previous years, thus ending the cold period of the 1990s. The trend over 1980–2005 is no longer toward cooling but complex climatic variations appear

    Sea Ice Tracking by Nested Correlations

    No full text
    corecore