256 research outputs found

    Positivity of the English language

    Get PDF
    Over the last million years, human language has emerged and evolved as a fundamental instrument of social communication and semiotic representation. People use language in part to convey emotional information, leading to the central and contingent questions: (1) What is the emotional spectrum of natural language? and (2) Are natural languages neutrally, positively, or negatively biased? Here, we report that the human-perceived positivity of over 10,000 of the most frequently used English words exhibits a clear positive bias. More deeply, we characterize and quantify distributions of word positivity for four large and distinct corpora, demonstrating that their form is broadly invariant with respect to frequency of word use.Comment: Manuscript: 9 pages, 3 tables, 5 figures; Supplementary Information: 12 pages, 3 tables, 8 figure

    Detection of Extensive Cross-Neutralization between Pandemic and Seasonal A/H1N1 Influenza Viruses Using a Pseudotype Neutralization Assay

    Get PDF
    BACKGROUND: Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear. METHODOLOGY/PRINCIPAL FINDINGS: Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008-2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Endothelium-derived Vasoactive Factors and Hypertension: Possible Roles in Pathogenesis and as Treatment Targets

    Get PDF
    Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase–soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage

    Renin, endothelial no synthase and endothelin gene expression in the 2Kidney-1clip goldblatt model of long-term renovascular hypertension

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Numerous reports have shown the influence of renin, nitric oxide (NO) and the endothelin (ET) systems for regulation of blood pressure and renal function. Furthermore, interactions between these peptides have been reported. Aim of our study was to investigate the relative contribution of these compounds in long-term renovascular hypertension/renal ischemia.</p> <p>Methods</p> <p>Hypertension/left-sided renal ischemia was induced using the 2K1C-Goldblatt rat model. Renal renin, ET-1, ET-3 and endothelial NO synthase (eNOS) gene expression was measured by means of RNAse protection assay at different timepoints up to 10 weeks after induction of renal artery stenosis.</p> <p>Results</p> <p>Plasma renin activity and renal renin gene expression in the left kidney were increased in the clipped animals while eNOS expression was unchanged. Furthermore, an increase in ET-1 expression and a decrease of ET-3 expression was detected in early stenosis.</p> <p>Conclusions</p> <p>While renin is obviously involved in regulation of blood pressure and renal function in unilateral renal artery stenosis, ET-1, ET-3 and endothelium derived NO do not appear to play an important role in renal adaptation processes in long-term renal artery stenosis, although ET-1 and ET-3 might be involved in short-term adaptation processes.</p

    H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells

    Get PDF
    The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs

    Search for the standard model Higgs boson at LEP

    Get PDF

    Sleep-Deprivation Regulates α-2 Adrenergic Responses of Rat Hypocretin/Orexin Neurons

    Get PDF
    We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e. following 2 hours of natural sleep in the morning, the α2-adrenergic receptor (α2-AR) agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC), it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK) channels. Since concentrations of clonidine up to a thousand times (100 µM) higher than those effective in SDC (100 nM), were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABAB agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α2-ARs associated with GIRK channels is normally down-regulated (or desensitized) in hcrt/orx neurons to only become available for their inhibition following sleep deprivation
    • …
    corecore