71 research outputs found

    A method for successful collection of multicores and gravity cores from Antarctic subglacial lakes

    Get PDF
    During the 2018–2019 Antarctic field season, the Subglacial Antarctic Lakes Scientific Access project team cleanly accessed Mercer Subglacial Lake, West Antarctica, to sample water and sediments beneath 1087 m of overlying ice. A multicorer was successful in sampling the sediment–water interface, with 4 deployments retrieving 10 cores between 0.3 and 0.4 m in length. Gravity coring was also successful, retrieving cores of 0.97 and 1.78 m in glacial diamict. However, sediment cores retrieved by the gravity cores were shorter than the core barrel penetration (as measured by mud streaks on the outside of the coring system), indicating that the system can likely be improved. This manuscript describes the design, implementation, successes, and lessons learned while coring sediments in a subglacial lake

    Association of genetic polymorphisms in the interleukin-10 promoter with risk of prostate cancer in Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies identified an increased risk of prostate cancer (PCa) in Caucasian men harboring polymorphisms of genes involved in innate immunity and inflammation. This study was designed to assess whether single nucleotide polymorphisms in the IL-10 promoter play a role in predisposing individuals to PCa in a Chinese population.</p> <p>Methods</p> <p>We genotyped three SNPs of the <it>IL-10 </it>promoter (-1082A/G, -819T/C and -592A/C) using polymerase chain reaction-restriction fragment length polymorphism analysis in 262 subjects with PCa and 270 age-matched healthy controls. Odds ratio and 95% confidence interval were determined by logistic regression for the associations between IL-10 genotypes and haplotypes with the risk of PCa and advanced PCa grade.</p> <p>Results</p> <p>No significant differences in allele frequency or genotype distribution were observed for any of the <it>IL-10 </it>SNPs between PCa patients and control subjects. Significantly higher frequencies of -1082G, -819C and -592C allele and GCC haplotype were observed, however, in early stage patients in comparison to advanced PCa patients (for -1082 G, 13.9% vs 6.1%, OR = 2.48, <it>P </it>= 0.005; for -819 C 40.3% vs 30.8%, OR = 1.51, <it>P </it>= 0.043; for -512C, 40.3% vs 30.8%, OR = 1.51, <it>P </it>= 0.043; and for haplotype GCC 11.1%vs 5.1%, OR = 2.66, P = 0.008, respectively).</p> <p>Conclusions</p> <p>Our results identify that <it>IL-10 </it>promoter polymorphisms might not be a risk factor for PCa in Chinese cohorts, but rather incidence of polymorphisms associates with PCa grade, suggesting that IL-10 expression may impact PCa progression.</p

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)

    Modest induction of phase 2 enzyme activity in the F-344 rat prostate

    Get PDF
    BACKGROUND: Prostate cancer is the most commonly diagnosed malignancy in men and is thought to arise as a result of endogenous oxidative stress in the face of compromised carcinogen defenses. We tested whether carcinogen defense (phase 2) enzymes could be induced in the prostate tissues of rats after oral feeding of candidate phase 2 enzyme inducing compounds. METHODS: Male F344 rats were gavage fed sulforaphane, β-naphthoflavone, curcumin, dimethyl fumarate or vehicle control over five days, and on the sixth day, prostate, liver, kidney and bladder tissues were harvested. Cytosolic enzyme activities of nicotinamide quinone oxidoreductase (NQO1), total glutathione transferase (using DCNB) and mu-class glutathione transferase (using CDNB) were determined in the treated and control animals and compared. RESULTS: In prostatic tissues, sulforaphane produced modest but significant increases in the enzymatic activities of NQO1, total GST and GST-mu compared to control animals. β-naphthoflavone significantly increased NQO1 and GST-mu activities and curcumin increased total GST and GST-mu enzymatic activities. Dimethyl fumarate did not significantly increase prostatic phase 2 enzyme activity. Compared to control animals, sulforaphane also significantly induced NQO1 or total GST enzyme activity in the liver, kidney and, most significantly, in the bladder tissues. All compounds were well tolerated over the course of the gavage feedings. CONCLUSION: Orally administered compounds will induce modestly phase 2 enzyme activity in the prostate although the significance of this degree of induction is unknown. The 4 different compounds also altered phase 2 enzyme activity to different degrees in different tissue types. Orally administered sulforaphane potently induces phase 2 enzymes in bladder tissues and should be investigated as a bladder cancer preventive agent

    Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria

    No full text
    Methylmalonate semialdehyde dehydrogenase (MMSDH) deficiency is a rare autosomal recessive disorder with varied metabolite abnormalities, including accumulation of 3-hydroxyisobutyric, 3-hydroxypropionic, 3-aminoisobutyric and methylmalonic acids, as well as β-alanine. Existing reports describe a highly variable clinical and biochemical phenotype, which can make diagnosis a challenge. To date, only three reported cases have been confirmed at the molecular level, through identification of homozygous mutations in ALDH6A1, the gene encoding MMSDH. Confirmation by enzyme assay has until now not been possible, due to the extreme instability of the enzyme substrate. We report a child with severe developmental delays, abnormal myelination on brain MRI, and transient/variable elevations in lactate, methylmalonic acid, 3-hydroxyisobutyric and 3-aminoisobutyric acids. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within exon 6 (c.514 T > C; p. Tyr172His) and exon 12 (c.1603C > T; p. Arg535Cys) of ALDH6A1. The resulting amino acid changes, both occurring in residues conserved among mammals, are predicted to be damaging at the protein level. Subsequent MMSDH enzyme assay demonstrated reduced activity in patient fibroblasts, measuring 2.5 standard deviations below the mean. We present the fourth reported case of MMSDH deficiency with confirmation at the molecular level, and expand on what is already an extremely variable clinical and biochemical phenotype. Furthermore, this is the first report to demonstrate a corresponding reduction in MMSDH enzyme activity. This report illustrates the emerging utilization of whole exome sequencing and variant data filtering using clinical data as an early tool in the diagnosis of rare and variable condition
    corecore