6 research outputs found

    Long-range Interactions for the A3\text{}^{3}1u\text{}_{u} and B3\text{}^{3}0u+\text{}_{u}^{+} States of Cd2\text{}_{2} from Line Shape Measurements

    No full text
    We report on very precise measurements of the absorption profile of the 326.1 nm resonance line of cadmium broadened by interactions with the ground state Cd atoms under thermal equilibrium. The experimental red wing profiles, corrected for the Boltzmann factor at different temperatures, are analysed in terms of the long-range potential parameters including dispersion and resonant interactions. The resonant interaction energy constant C3\text{}_{3} is calculated to be 2.31×102\text{}^{-2} eV Å3\text{}^{3} and the van der Waals constant C6\text{}_{6} for difference potentials between the ground state X1\text{}^{1}0+\text{}_{ }^{+}g and the excited states B3\text{}^{3}0u+\text{}_{u}^{+} and A3\text{}^{3}1u\text{}_{u} of Cd2\text{}_{2} derived experimentally are found to be (182.6± 8) eV Å6\text{}^{6} and (289±4) eV Å6\text{}^{6}, respectively. The former is determined for the first time and the latter is considerably corrected in comparison to earlier determination. The van der Waals constant C6\text{}_{6} for the ground state of Cd2\text{}_{2} is discussed and estimated to be C6g\text{}_{6}^{g}=(247± 40) eV Å6\text{}^{6}

    Ochrana hematitových elektrod pomocí krycích TiO2 vrstev vytvořených ALD

    No full text
    Iron (III) oxide, in the form of hematite (alpha-Fe2O3), is a n-type semiconductor which is photoactive in the visible spectral region. Therefore, use in photoelectrocatalysis and photoassisted water electrolysis may be suggested. For such implementations, stability of contacts with liquid phases is mandatory. Hematite is stable in alkaline media but less stable in acidic media. For the first time the coverage of porous photoactive Sn doped hematite by thin capping layers of TiO2, deposited by Atomic Layer Deposition (ALD) and its impact on photocurrent and chemical stability of hematite is shown. The nominal thicknesses of the TiO2 ALD coatings were 0.5, 2 and 7.5 nm. The presence of the TiO2 coatings was evidenced by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy (HR-TEM) and scanning TEM coupled with energy dispersive X-ray (EDX) spectroscopy. HR-TEM analyses revealed that the TiO2 capping layers were amorphous and conformal. Exposure of uncovered hematite layers to 1 M sulfuric acid led to a nominal dissolution rate of 0.23 nm/h which was halved when a TiO2 ALD coating (7.5 nm thin) was applied. Due to mismatch of the valence band positions of the two semiconductors, photocurrents were strongly diminished as the capping layer thickness was increased. Post calcination of as deposited ALD films on hematite resulted in an increase of photocurrent, which only exceeded photocurrents of pristine hematite when the ALD thickness was not more than 0.5 nm.Oxid železitý ve formě hematitu (α-Fe2O3) je polovodič n-typu a je fotoaktivní ve viditelné spektrální oblasti. Proto lze využít ve fotoelektrokatalýze a fotoasistovaném rozkladu vody. Pro tyto využití je důležitá jeho stabilita v kontaktu s kapalnou fází. Hematit je stabilní v alkalickém prostředí, ale méně stabilní v kyselém prostředí. V této práci poprvé ukazueme pokrytí porézního Sn-dopovaného hematitu tenkými krycími vrstvami TiO2, deponovanými depozicí atomárních vrstev (ALD) a dopad těchto vrstev na chemickou stabilitu a stabilitu fotoproudů. Nominální tlouštky ALD TiO2 vrstev byly 0.5, 2 a 7.5 nm. Přítomnost TiO2 vrstev byla detekována pomocí rentgenové fotoelektronové spektroskopie, transmisní elektronové mikroskopie s vysokým rozlišením (HR-TEM) a skenovací TEM s energiově disperzním detektorem (EDX). HR-TEM analýzy odhalili, že TiO2 vrstavy byly rovnoměrné a zárověn amorfní. Jejich expozice nepokrytého hematitu v 1M kyselině sírové způsobila rozpouštění o rychlosti 0.23 nm/h, přičemž tato hodnota poklesla o polovinu při pokrytí TiO2 vrstvou (7.5 nm). Díky energetické nevyrovnanosti valenčních pásů obou polovodičů docházelo ke graduálnímu poklesu vygenerovaných fotoproudů s rostoucí tloušťkou krycí vrstvy. Následné žíhání deponovaných hematitů zvýšilo fotoproudy, které byly v případě nejtenčí krycí vrstvy (0.5 nm) dokonce vyšší než fotoproudy samotného hematitu

    Mn rich MnSb2Te4 A topological insulator with magnetic gap closing at high Curie temperatures of 45 50 K

    Get PDF
    Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high precision metrology, edge channel spintronics, and topological qubits. The stable 2 state of Mn enables intrinsic magnetic topological insulators. MnBi2Te4 is, however, antiferromagnetic with 25 K N el temperature and is strongly n doped. In this work, p type MnSb2Te4, previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i Ferromagnetic hysteresis with record Curie temperature of 45 50 K, ii out of plane magnetic anisotropy, iii a 2D Dirac cone with the Dirac point close to the Fermi level, iv out of plane spin polarization as revealed by photoelectron spectroscopy, and v a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy STS , are shown. Moreover, a critical exponent of the magnetization amp; 946; amp; 8776; 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulator

    Atomically sharp domain walls in an antiferromagnet

    Get PDF
    The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antifer-romagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Neel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field-insensitive neuromorphic functionalities
    corecore