42 research outputs found

    Recycling probability and dynamical properties of germinal center reactions

    Full text link
    We introduce a new model for the dynamics of centroblasts and centrocytes in a germinal center. The model reduces the germinal center reaction to the elements considered as essential and embeds proliferation of centroblasts, point mutations of the corresponding antibody types represented in a shape space, differentiation to centrocytes, selection with respect to initial antigens, differentiation of positively selected centrocytes to plasma or memory cells and recycling of centrocytes to centroblasts. We use exclusively parameters with a direct biological interpretation such that, once determined by experimental data, the model gains predictive power. Based on the experiment of Han et al. (1995b) we predict that a high rate of recycling of centrocytes to centroblasts is necessary for the germinal center reaction to work reliably. Furthermore, we find a delayed start of the production of plasma and memory cells with respect to the start of point mutations, which turns out to be necessary for the optimization process during the germinal center reaction. The dependence of the germinal center reaction on the recycling probability is analyzed.Comment: 30 pages, 8 figure

    Drifting Pattern Domains in a Reaction-Diffusion System with Nonlocal Coupling

    Full text link
    Drifting pattern domains (DPDs), moving localized patches of traveling waves embedded in a stationary (Turing) pattern background and vice versa, are observed in simulations of a reaction-diffusion model with nonlocal coupling. Within this model, a region of bistability between Turing patterns and traveling waves arises from a codimension-2 Turing-wave bifurcation (TWB). DPDs are found within that region in a substantial distance from the TWB. We investigated the dynamics of single interfaces between Turing and wave patterns. It is found that DPDs exist due to a locking of the interface velocities, which is imposed by the absence of space-time defects near these interfaces.Comment: 4 pages, 4 figure

    Fold-Hopf Bursting in a Model for Calcium Signal Transduction

    Full text link
    We study a recent model for calcium signal transduction. This model displays spiking, bursting and chaotic oscillations in accordance with experimental results. We calculate bifurcation diagrams and study the bursting behaviour in detail. This behaviour is classified according to the dynamics of separated slow and fast subsystems. It is shown to be of the Fold-Hopf type, a type which was previously only described in the context of neuronal systems, but not in the context of signal transduction in the cell.Comment: 13 pages, 5 figure

    Quantifying the Length and Variance of the Eukaryotic Cell Cycle Phases by a Stochastic Model and Dual Nucleoside Pulse Labelling

    Get PDF
    A fundamental property of cell populations is their growth rate as well as the time needed for cell division and its variance. The eukaryotic cell cycle progresses in an ordered sequence through the phases G(1), S, G(2), and M, and is regulated by environmental cues and by intracellular checkpoints. Reflecting this regulatory complexity, the length of each phase varies considerably in different kinds of cells but also among genetically and morphologically indistinguishable cells. This article addresses the question of how to describe and quantify the mean and variance of the cell cycle phase lengths. A phase-resolved cell cycle model is introduced assuming that phase completion times are distributed as delayed exponential functions, capturing the observations that each realization of a cycle phase is variable in length and requires a minimal time. In this model, the total cell cycle length is distributed as a delayed hypoexponential function that closely reproduces empirical distributions. Analytic solutions are derived for the proportions of cells in each cycle phase in a population growing under balanced growth and under specific non-stationary conditions. These solutions are then adapted to describe conventional cell cycle kinetic assays based on pulse labelling with nucleoside analogs. The model fits well to data obtained with two distinct proliferating cell lines labelled with a single bromodeoxiuridine pulse. However, whereas mean lengths are precisely estimated for all phases, the respective variances remain uncertain. To overcome this limitation, a redesigned experimental protocol is derived and validated in silico. The novelty is the timing of two consecutive pulses with distinct nucleosides that enables accurate and precise estimation of both the mean and the variance of the length of all phases. The proposed methodology to quantify the phase length distributions gives results potentially equivalent to those obtained with modern phase-specific biosensor-based fluorescent imaging

    A minimal model of peptide binding predicts ensemble properties of serum antibodies

    Get PDF
    <p/> <p>Background</p> <p>The importance of peptide microarrays as a tool for serological diagnostics has strongly increased over the last decade. However, interpretation of the binding signals is still hampered by our limited understanding of the technology. This is in particular true for arrays probed with antibody mixtures of unknown complexity, such as sera. To gain insight into how signals depend on peptide amino acid sequences, we probed random-sequence peptide microarrays with sera of healthy and infected mice. We analyzed the resulting antibody binding profiles with regression methods and formulated a minimal model to explain our findings.</p> <p>Results</p> <p>Multivariate regression analysis relating peptide sequence to measured signals led to the definition of amino acid-associated weights. Although these weights do not contain information on amino acid position, they predict up to 40-50% of the binding profiles' variation. Mathematical modeling shows that this position-independent ansatz is only adequate for highly diverse random antibody mixtures which are not dominated by a few antibodies. Experimental results suggest that sera from healthy individuals correspond to that case, in contrast to sera of infected ones.</p> <p>Conclusions</p> <p>Our results indicate that position-independent amino acid-associated weights predict linear epitope binding of antibody mixtures only if the mixture is random, highly diverse, and contains no dominant antibodies. The discovered ensemble property is an important step towards an understanding of peptide-array serum-antibody binding profiles. It has implications for both serological diagnostics and B cell epitope mapping.</p

    Sex-Associated Differences in Cytomegalovirus Prevention: Prophylactic Strategy is Potentially Associated With a Strong Kidney Function Impairment in Female Renal Transplant Patients

    Get PDF
    Post-transplantation cytomegalovirus (CMV) syndrome can be prevented using the antiviral drug (val)ganciclovir. (Val)ganciclovir is typically administered following a prophylactic or a pre-emptive strategy. The prophylactic strategy entails early universal administration, the pre-emptive strategy, early treatment in case of infection. However, it is not clear which strategy is superior with respect to transplantation outcome; sex-specific effects of these prevention strategies are not known. We have retrospectively analyzed 540 patients from the multi-centre Harmony study along eight pre-defined visits: 308 were treated according to a prophylactic, 232 according to a pre-emptive strategy. As expected, we observed an association of prophylactic strategy with lower incidence of CMV syndrome, delayed onset and lower viral loads compared to the pre-emptive strategy. However, in female patients, the prophylactic strategy was associated with a strong impairment of glomerular filtration rate one year post-transplant (difference: -11.8 ± 4.3 ml min-1·1.73 m-2, p = 0.006). Additionally, we observed a tendency of higher incidence of acute rejection and severe BK virus reactivation in the prophylactic strategy group. While the prophylactic strategy was more effective for preventing CMV syndrome, our results suggest for the first time that the prophylactic strategy might lead to inferior transplantation outcomes in female patients, providing evidence for a strong association with sex. Further randomized controlled studies are necessary to confirm this potential negative effect

    Risk factors for Epstein–Barr virus reactivation after renal transplantation: Results of a large, multi‐centre study

    Get PDF
    Epstein-Barr virus (EBV) reactivation is a very common and potentially lethal complication of renal transplantation. However, its risk factors and effects on transplant outcome are not well known. Here, we have analysed a large, multi-centre cohort (N = 512) in which 18.4% of the patients experienced EBV reactivation during the first post-transplant year. The patients were characterized pre-transplant and two weeks post-transplant by a multi-level biomarker panel. EBV reactivation was episodic for most patients, only 12 patients showed prolonged viraemia for over four months. Pre-transplant EBV shedding and male sex were associated with significantly increased incidence of post-transplant EBV reactivation. Importantly, we also identified a significant association of post-transplant EBV with acute rejection and with decreased haemoglobin levels. No further severe complications associated with EBV, either episodic or chronic, could be detected. Our data suggest that despite relatively frequent EBV reactivation, it had no association with serious complications during the first post-transplantation year. EBV shedding prior to transplantation could be employed as biomarkers for personalized immunosuppressive therapy. In summary, our results support the employed immunosuppressive regimes as relatively safe with regard to EBV. However, long-term studies are paramount to support these conclusions

    High incidence and viral load of HHV-6A in a multi-centre kidney transplant cohort

    Get PDF
    Human herpesvirus 6 (HHV-6) is a common opportunistic pathogen in kidney transplant recipients. Two distinct species of HHV-6, HHV-6A and HHV-6B, have been identified, of which the latter seems to be dominant. However, it is unclear whether they increase the likelihood of other viral reactivations. We characterized a multi-centre cohort of 93 patients along nine study visits for viral load. We tested for the following viruses: HHV-6A and HHV-6B, the herpesviruses cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and the polyomavirus BK (BKV). We detected HHV-6A viral load in 48 (51.6%) patients, while the incidence of HHV-6B was much lower, being detected in 6 (6.5%) patients. The incidence of HHV-6A was higher than of BKV, CMV and EBV. HHV-6A also demonstrated higher viral loads than the rest of viruses. There was a non-significant trend of association between HHV-6A and HHV-6B as co-infection, whereas no increased incidence of other viruses among patients with HHV-6A reactivation was observed. There was no negative effect of high HHV-6A (&gt;10,000 copies/ml) load on markers of renal graft and hepatic function or blood count twelve months post-transplant. In contrast to previously published data, our results show a clear dominance of HHV-6A in peripheral blood when compared to HHV-6B, with higher incidence and viral load levels. Despite the high HHV-6A loads observed, we did not identify any negative effects on posttransplant outcome

    A “Crossomics” Study Analysing Variability of Different Components in Peripheral Blood of Healthy Caucasoid Individuals

    Get PDF
    Background: Different immunotherapy approaches for the treatment of cancer and autoimmune diseases are being developed and tested in clinical studies worldwide. Their resulting complex experimental data should be properly evaluated, therefore reliable normal healthy control baseline values are indispensable. Methodology/Principal Findings: To assess intra- and inter-individual variability of various biomarkers, peripheral blood of 16 age and gender equilibrated healthy volunteers was sampled on 3 different days within a period of one month. Complex "crossomics'' analyses of plasma metabolite profiles, antibody concentrations and lymphocyte subset counts as well as whole genome expression profiling in CD4(+)T and NK cells were performed. Some of the observed age, gender and BMI dependences are in agreement with the existing knowledge, like negative correlation between sex hormone levels and age or BMI related increase in lipids and soluble sugars. Thus we can assume that the distribution of all 39.743 analysed markers is well representing the normal Caucasoid population. All lymphocyte subsets, 20% of metabolites and less than 10% of genes, were identified as highly variable in our dataset. Conclusions/Significance: Our study shows that the intra- individual variability was at least two-fold lower compared to the inter-individual one at all investigated levels, showing the importance of personalised medicine approach from yet another perspective
    corecore