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Abstract

A fundamental property of cell populations is their growth rate as well as the time needed for cell division and its variance.
The eukaryotic cell cycle progresses in an ordered sequence through the phases G1, S, G2, and M, and is regulated by
environmental cues and by intracellular checkpoints. Reflecting this regulatory complexity, the length of each phase varies
considerably in different kinds of cells but also among genetically and morphologically indistinguishable cells. This article
addresses the question of how to describe and quantify the mean and variance of the cell cycle phase lengths. A phase-
resolved cell cycle model is introduced assuming that phase completion times are distributed as delayed exponential
functions, capturing the observations that each realization of a cycle phase is variable in length and requires a minimal time.
In this model, the total cell cycle length is distributed as a delayed hypoexponential function that closely reproduces
empirical distributions. Analytic solutions are derived for the proportions of cells in each cycle phase in a population
growing under balanced growth and under specific non-stationary conditions. These solutions are then adapted to describe
conventional cell cycle kinetic assays based on pulse labelling with nucleoside analogs. The model fits well to data obtained
with two distinct proliferating cell lines labelled with a single bromodeoxiuridine pulse. However, whereas mean lengths are
precisely estimated for all phases, the respective variances remain uncertain. To overcome this limitation, a redesigned
experimental protocol is derived and validated in silico. The novelty is the timing of two consecutive pulses with distinct
nucleosides that enables accurate and precise estimation of both the mean and the variance of the length of all phases. The
proposed methodology to quantify the phase length distributions gives results potentially equivalent to those obtained
with modern phase-specific biosensor-based fluorescent imaging.
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Introduction

The cell cycle is one of the most fundamental processes in

biology. Through this process, a parental cell transmits to its two

daughter cells genetic and epigenetic information by accurately

replicating its DNA and evenly apportioning all nuclear and

extranuclear contents. The mechanism of cell cycle regulation is

tailored to ensure accurate cellular content replication, but seems

to be less constrained by how long it takes to complete this process

successfully. Several check points exist that ensure that chromo-

somes are faithfully copied and that the parental cell has enough

material in order to produce two viable isogenic daughter cells.

Meeting the conditions of each of these check points takes variable

time and delays the completion of the cell cycle. Yet, how long the

cells take on average to complete the cell cycle is an important

biological property. In unicellular organisms, the average inter-

mitotic time is a direct measurement of the organism’s fitness,

while in multicellular organisms, the regulation of the rate of cell

division is critical for development, stem cell maintenance, tissue

or organ homeostasis, wound healing, and immunity. The

temporal organization of the cell cycle is therefore under tight

regulation, likely reflecting a fine balance between accuracy in

information transmission and speed.

The average cell cycle time has been estimated at the

population level by measuring the growth curve of exponentially

proliferating cell cohorts, under conditions in which cells can be

counted and cell death is negligible compared to the population

wide growth rate. Under conditions in which cell counting is not

possible or in which cell death rates cannot be neglected (e.g.,

homeostasis, immune reactions, cancer growth), indirect estimates

for the average division time or the average death time are

typically inferred e.g., through the rate of increase of cells arrested

in mitosis after administration of colchicine, the fraction of labelled

mitotic figures after pulse labelling (FLM method), and from long-
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term labelling and delabelling time-series of deuterium or

bromodeoxyuridine (BrdU) tracing experiments [1–3]. For grow-

ing cell populations these estimates depend on assumptions about

the shape of the intermitotic time distribution [4]. The latter, when

analyzed at a single-cell level, e.g., by time-lapse imaging, shows

significant variability in otherwise seemingly homogeneous cell

populations. This observation led more than forty years ago to the

development of one of the first stochastic cell cycle models [5].

Smith and Martin proposed at that time that cell’s life

comprehends an A state and a B phase. Whereas the time cells

spend in the A state was assumed to be exponentially distributed,

the time cells spend in the B phase was, in this simplest scenario, a

fixed delay. Experimental validation was provided by time-lapse

imaging of growing cell cultures, measurements of fraction of

labelled mitoses and fractions of sibling pairs with age difference

greater than a specified value [6]. Even though later studies [7–10]

have shown that the model assumptions do not exactly match

experimental data, its simplicity and mathematical tractability

makes the Smith-Martin model even today a popular theoretical

model [6,11].

In the last ten years, 5-(and 6)-Carboxyfluorescein diacetate

succinimidyl ester (CFSE) dilution assays in concert with a whole

set of advanced modeling techniques [12–14] allowed to estimate

the average duration, as well as inter-cellular variability in more

complex scenarios with division time densities in vitro or in vivo
after adoptive cell transfer. Especially generation structure,

activation times and generation dependent cell death were

included in these models and subsequently estimated in the

context of lymphocyte proliferation. Inter-cellular variability not

only of division times but also of death times were confirmed

directly in long-term tracking of single HeLa cells [15] and B-

lymphocytes [10]. The latter study provided extensive quantitative

data on the shape of age-dependent division and death time

distributions which are required to calibrate e.g., the Cyton [16] or

similar models. A review on these, and alternative stochastic cell

cycle models is given in [4].

At a higher temporal and functional resolution the eukaryotic

cell cycle is structured into four distinct phases: 1) the G1 phase

during which organelles are reorganized and chromatin is licensed

for replication, 2) the S phase in which the chromosomes are

duplicated by DNA replication, 3) the G2 phase which serves as a

holding time for synthesis and accumulation of proteins needed in

4) the M phase, or mitosis, which is marked by chromatin

condensation, nuclear envelope breakdown, chromosomal segre-

gation, and finally cytokinesis, which completes the generation of

two daughter cells in G1 phase [17].

Considering explicitly cell cycle phases in mathematical

models of cell division probably dates back to the discovery

that DNA is replicated mainly during a specific period of the

cell cycle. Already in their seminal paper, Smith and Martin

related the A state to the G1 phase and the B phase to the S, G2,
M and possibly to some part of the G1 phase. Subsequent

studies that explored phase-resolved cell cycle models, major-

itarely rooted in the field of oncology and cancer therapy,

include [18–25]. As in the present work, most of these studies

relied on flow cytometry (FACS) data generated by labelling

selectively cells that are synthesizing DNA using nucleoside

analogs (e.g., BrdU, iodo-deoxyuridine (IdU) or ethynyl-

deoxyuridine (EdU)), together with a fluorescent intercalating

agent to measure total DNA content (e.g., 4,6- diamidino-2-

phenylindole (DAPI), and propidium iodide (PI)), in order to test

the model assumptions and draw conclusions about the cells and

conditions under consideration.

Here we present a simple stochastic cell cycle model that

incorporates temporal variability at the level of individual cell

cycle phases. More precisely, we extend the concept underlying

the Smith-Martin model of delayed exponential waiting times to

the cell cycle phases. We first demonstrate that the model is in

good agreement with published experimental data on inter-mitotic

division time distributions. We then show, based on stability

analysis, that phase-specific variability remains largely undeter-

mined when measurements are taken on cell populations under

balanced growth (i.e., growth under asymptotic conditions in

which the expected proportions of cells in each phase of the

cycle are constant). We prove that by properly measuring

proliferating cells under unbalanced growth, one can with at

least three well placed support points, assuming noise-free

conditions, uniquely identify the average and variance in the

completion time of each of the cell cycle phases. When

comparing our model with two experimental data sets obtained

from conventional pulse-labelling experiments of distinct pro-

liferating cell lines, we find that, while the kinetics extracted

from these experiments are well approximated by the predic-

tions of the proposed model, the information content is

insufficient to determine accurately all the parameters. Finally

we propose a modification of the prevailing experimental

protocol, based on dual-pulse labelling with BrdU and, for

example, EdU, that overcomes this shortcoming.

Results

Model definition
The eukaryotic cell cycle is defined as an orderly sequence of

three phases distinguished by cellular DNA content, termed G1, S
and G2M: A dividing cell is supposed to proceed, under this

minimalist view, from one phase to another in a fixed order, until

reaching the end of G2M phase. Here it completes cytokinesis

generating two genetically identical daughter cells that are by

definition in G1 phase (Fig. 1 A). We assume that the completion

time of any phase (i.e. the time lapse between the entry to and exit

from that given phase) is a random variable t, which is distributed

according to a delayed (or shifted) exponential density function

(Fig. 1 B),

Author Summary

Among the important characteristics of dividing cell
populations is the time necessary for cells to complete
each of the cell cycle phases, that is, to increase the cell’s
mass, to duplicate and repair its genome, to properly
segregate its chromosomes, and to make decisions
whether to continue dividing or enter a quiescent state.
The cycle phase times also determine the maximal rate at
which a dividing cell population can grow in size. Cell cycle
phase completion times largely differ between cell types,
cellular environments as well as metabolic stages, and can
thus be considered as part of the phenotype of a given
cell. Our article advances the methods to quantitatively
characterize this phenotype. We introduce a novel phase-
resolved cell cycle progression model and use it to
estimate the mean and variance of the cycle phase
completion times based on nucleoside analog pulse
labelling experiments. This classic workhorse of cell cycle
kinetic studies is revamped by our approach to potentially
rival in accuracy and precision with modern phase-specific
biosensor-based fluorescent imaging, while superseding
the latter in its application scope.

A Stochastic Phase-Resolved Cell Cycle Model
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ft(t) ~
1

a
e{1

a(t{b)H(t{b), ð1Þ

where a is the reciprocal of the rate of the exponential (measured

in time units) and b is the fixed delay (in time units), and H

denotes the Heaviside step function whose value is zero for

negative argument, i.e., for tvb, and one for positive argument.

Notice that with a slight abuse of notation we denote here the

random variable (subscript of density function f ) and the value it

assumes (the argument of the function ft) by the same symbol t:
This will allow us to denote the probability density function and

the cumulative probability distribution of the random variable x

by fx and Fx respectively, and to define the complementary

cumulative distribution Rx~1{Fx: The delay b in Eq. 1 ‘ensures’

that a cell that enters a specific phase will remain therein for at

least b time units (e.g. hours) before proceeding to the next phase.

Besides this fixed minimal time b, additional less predictable

effects that affect the completion of the processes associated to a

phase are assumed to be exponentially distributed with both mean

and standard deviation given by a: The phase specific mean

completion time, denoted in the following by �tt is then azb with

standard deviation a and coefficient of variation a=�tt: The Laplace

transform of Eq. 1 is given by

Lv ft(t)f g~ e{bv

1zav
, ð2Þ

where v is the transformed variable corresponding to the time

lapse t: The temporal organization of the cell cycle is defined by

the vector of phase-specific completion times, t~ftG1
,tS,tG2Mg,

which in turn depend on the parameter vectors a~faG1
,aS,aG2Mg

and b~fbG1
,bS,bG2Mg: The cell cycle length, understood as the

time lapse between the entry into G1 until exit out of G2M, is the

random variable T~tG1
ztSztG2M: Its probability density

function is the convolution of the three underlying delayed

exponential distributions and corresponds to the delayed hypoex-

ponential distribution. Explicit expressions can be computed using

the inverse Laplace transform L{1 of the product of the Laplace

transforms of the three densities given by Eq. 2, i.e.,

fT (T)~L{1
T P

i

e{biv

1zai v

� �
with i~G1, S, G2M: ð3Þ

In case that all entries in a are distinct, we get

fT (T)~
X

i

ai e
{

(T{B)
ai

Pj, i=j (ai{aj)

0
B@

1
CAH T{Bð Þ, ð4Þ

in which the indices i and j iterate over the three phases and B is

the sum of the elements in b:
In Fig. 1 B we plot the shape of the phase specific completion

time distribution ft defined by Eq. 1, which illustrates that the

probability for a cell to complete a given phase in less than b time

units is zero under this model. A graphical representation of the

cell cycle model is provided in Fig. 1 A. Notice that each phase can

have distinct parameter values a and b for the completion time

distribution.

As a first validation, we compared the empirical frequency of

undivided cells as a function of time after ‘birth’ (reported by [5])

with the respective probability according to the model 1{FT ,
which we denote as RT (Fig. 1 C). As a second test, we fitted the

cell cycle length density fT given by Eq. 4 to data extracted from

video-tracking of in vitro proliferating B cells [10]. The delayed

hypoexponential distribution fT (shown in Fig. 1 D), but also the

delayed log-normal and the delayed gamma distribution (not

shown) with parameter values proposed in [10], reproduce closely

the measured division time histogram. While the two latter depend

on three parameters each, the hypoexponential distribution

depends on six parameters, that remain largely undetermined

given this kind of data.

Balanced growth
A proliferating cell population that obeys the probability model

specified in the previous section can be represented by a non-

Markov multidimensional random process, whose evolution

depends on its history. There exist an infinite number of possible

histories or realizations of the population size dynamics N(t): We

focus here on a specific important subset, namely those under

balanced growth. Under balanced growth a cell population grows

exponentially E½N(t)�~def
E½NG1

(t)zNS(t)zNG2M(t)�!emt with

mean growth rate m and constant mean proportions of cells in

the three phases n~fnG1
,nS,nG2Mg, where e.g.,

nG1
~
def

E½NG1
(t)=(NG1

(t)zNS(t)zNG2M(t))�: The expectation

operator E½� is defined over all possible realizations of the process.

We will now derive explicit expressions for nG1
, nS and nG2M

and a transcendental equation that defines m, the growth rate. A

Figure 1. Stochastic cell cycle model. A: Scheme of the proposed
cell cycle model with three phases G1, S and G2M: The dashed border
between the G2 and the M phase indicates that the G2 and M phase
are pooled into a single phase. The random time t a cell needs to
complete the processes associated to each of the phases, follows a
delayed exponential distribution with specific parameters a and b for
each phase. B: Delayed-exponential completion time distribution
density ft with parameters a and b: C: Best fit of the complementary
cumulative distribution RT to the fraction of undivided cells after birth
obtained by time lapse cinematography [5] of slow and fast dividing
cell lines. D: Best fit of fT defined by Eq. 4 (solid line) to inter-mitotic
time distribution density measured by long-term video tracking of in
vitro proliferating B-cells [10]. The data in C and D were read from the
graphs in the original publications ([5] and [10] respectively).
doi:10.1371/journal.pcbi.1003616.g001
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first step in obtaining the constant frequencies of cells in each of

the phases consist in computing the ratio between the cells that

complete a given phase and the total number of cells inside the

same phase at time t: This phase-specific quantity, denoted here

by c, represents the asymptotic efflux rate constant, which will be

useful, as we will see, to construct a transition probability matrix

Q: The latter will enable us to employ methods from linear algebra

to solve the steady state condition.

Suppose for example that a cohort of cells entered a given phase

at time tin: Then the density of cells leaving this phase at time tout

will be ft(tout{tin): Similarly if a cohort of cells entered this phase

at time tin, then a proportion Rt(t{tin) will remain in it until time

t:
Recalling that the influx of cells into a given phase is

proportional to em t and that Rt(t) is the complementary

cumulative distribution of t, (1{Ft(t)), which is Laplace

transformed to Lvf1{Ft(t)g~(1{Lvfft(t)g)=v, we integrate

over all past entries and finally take the ratio to obtain

c~

Ð t

{? emxft(t{x)dxÐ t

{? emxRt(t{x)dx
ð5Þ

~
mLmfft(t)g

1{Lmfft(t)g ð6Þ

~
m

(amz1)ebm{1
: ð7Þ

While the second equality is a consequence of the definition of

the Laplace transform, the third equality follows by substituting

Lmfft(t)g using Eq. 2. For a phase without a delay, i.e., b~0, the

last expression simplifies to the familiar mass action principle,

where the transition probability is directly proportional to the

decay rate 1=a: Assuming that cells are immortal and recalling

that division occurs as cells proceed from G2M to G1 we build up

the transition probability matrix as follows

Q~

{cG1
0 2cG2M

cG1
{cS 0

0 cS {cG2M

2
64

3
75: ð8Þ

The balanced growth condition can now be formulated in

matrix form

Q
nG1

nS

nG2M

2
64

3
75~m

nG1

nS

nG2M

2
64

3
75, ð9Þ

where the growth rate m is an eigenvalue of Q and the

proportions vector n~fnG1
, nS, nG2Mg is the corresponding

eigenvector. It can be shown that there exists a single dominating

real positive eigenvalue for Q (see Materials and Methods) whose

associated normalized eigenvector is

nG1

nS

nG2M

2
64

3
75~

2|(1{1=(e
bG1

m
(aG1

mz1)))

1{nG1
{nG2M

{1|(1{e
bG2Mm

(aG2Mmz1))

2
664

3
775: ð10Þ

The uniqueness and existence of a dominating positive real root

ultimately motivates our focus on balanced exponential growth, as

any immortal proliferating cell population with sufficient nutrients

and space will eventually enter this stationary phase. The time it

takes, either starting with a single cell or a synchronized cell cohort

to enter this state depends on the cell cycle parameters. The

exponential growth rate m is the unique real positive root of the

characteristic equation det(Q{m1)~0 which writes as

m3(2{Pi ebim(1zaim))

Pi (ebim(1zaim){1)
~0: ð11Þ

It is easy to see that the denominator in Eq. 11 is always

positive. To determine a non-trivial m it remains to solve the

transcendental equation in the numerator

2{P
i

ebim(1zaim)~0: ð12Þ

Numerical solutions to this equation can be computed using

e.g., the Newton-Raphson root finding algorithm, with fast

convergence if the initial value is set to m0~ log (2)=T , where T
is the average cell cycle length, i.e., the sum of the elements in

�tt~f�ttG1
,�ttS,�ttG2Mg: This first guess is a naive estimate for m

assuming that cells divide according to a deterministic division

time identical to the average of the hypoexponential density

defined in Eq. 3.

Learning from cell frequencies measured under balanced
growth

The predicted fractions of cells in each of the phases can be

compared to frequencies extracted experimentally from bivariate

analysis of cell populations transiently exposed to nucleoside

analogs and subsequently examined both for the intensities of the

signals due to incorporated nucleoside analog and total DNA

content [26] (e.g. the so called BrdU-DAPI staining dot plot). The

question that we want to address in this section is: What can

potentially be learned about the parameters of the model, given

this type of experimental data? By definition, the measured

frequencies will sum to one, and therefore we have for three

populations effectively only two equations but six model param-

eters. This makes it impossible to identify all the parameter values,

irrespective of the number of samples we take. It is however

possible to derive analytical expressions for the upper and lower

bounds for both the parameters and the average completion time

of each phase.

Consider the experimentally determined frequencies, denoted

by ~nn~f~nnG1
, ~nnS, ~nnG2Mg: Substituting the vector n by ~nn in Eq. 10

and solving for each phase specific parameter a, we obtain

a~(ke{bm{1)=m, ð13Þ

A Stochastic Phase-Resolved Cell Cycle Model
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where k is a phase specific element of the vector

k~ kG1
,kS,kG2M

n o
~

2

2{~nnG1

,
2{~nnG1

1z~nnG2M

, 1z~nnG2M

( )
: ð14Þ

The phase specific parameters a and b, respectively the

reciprocal rate and delay, are by definition greater or equal to

zero. These conditions propagate into Eq. 13 which allows us to

specify boundaries for a and b: First notice that a is, for each

phase, a monotonically decreasing function of b with a maximum

(k{1)=m at b~0 and a zero crossing at b~ ln (k)=m: The

maximum and the root represent the upper bounds for a and b
respectively, while the lower bounds are zero for both. We thus

have for each phase

a[ 0, (k{1)=m½ � and b[ 0, ln (k)=m½ �: ð15Þ

The mean phase-specific completion time, �tt, the sum of the

reciprocal rate a and the delay b, is also bounded, with an interval

given by

�tt~(azb) [ ln (k)=m, (k{1)=m½ �: ð16Þ

This result is derived from the fact that (azb) is concave having

its unique minimum at b~ln(k)=m, which follows from setting the

derivative Lb(azb)~1{ke{bm to zero. This implies that (azb)

is a monotonically decreasing function in the interval

b [ ½0, ln (k)=m� with the corresponding extrema specified above.

It is important to note that the intervals defined by Eqs 13–16

depend on the average growth rate m which is in general not

known. Formally if one specific pair of parameter vectors a and b
explains the measured frequencies with growth rate m, the scaled

parameter vectors ca and cb mimic equally well the same data for

arbitrary positive c, however with a reduced growth rate m=c: This

can be easily verified by substituting these expressions in Eq. 10

and Eq. 12. The direct consequence is that m remains undefined.

However for the relative average time a cells spends e.g., in G1

phase (aG1zbG1)=T the growth rate cancels out.

Using the fact that k[�1,2½ and the appropriate series expansion

for the natural logarithm, the widths of the intervals bounding a, b
and (azb) for each phase can be written as:

wa~
1

m
(k{1)~

1

m

X1

i~1

({1)iz1

i
(k{1)i,

wb~
1

m

X?
i~1

({1)iz1

i
(k{1)n, ð17Þ

wazb~
1

m

X?
i~2

({1)i

i
(k{1)n:

From this it is straight-forward to show that wawwbwwazb:
This implies that by using measurements of the phase-specific

stationary cell frequencies to infer the phase-specific completion

times t results in estimates of the mean value azb that are more

precise than the estimates of the standard deviation a: Notice that

the width of the intervals can be interpreted as a naive lower

bound for the uncertainty about the respective parameter values.

For the two data sets analyzed in this article (see details in next

section), we computed the intervals for the phase-specific standard

deviations wa that were on average *10 times wider than the

intervals for the expected phase-specific completion times wazb:

Transient unbalanced growth
Balanced growth analysis does not allow to distinguish between fixed

(a~0) and purely exponentially distributed (b~0) completion times

even if m is known. This follows from Eq. 15 because possible values for

the standard deviation a include 0 and (k{1)=m, and the latter

requires, according to Eq. 16, the delay b to be null.

The incapacity to resolve the values of a and b is overcome if

one selects and follows a subpopulation within which the

proportions of cells in each phase are transiently different from

the balanced growth proportions. Consider a simple thought
experiment that consists in taking a population under balanced

growth and labelling all the cells that are in a specific phase, say o,
which can be either G1, S or G2M: Initially all the cells are in the

same phase o, but as time passes by the labelled cells progress

through the cell cycle and eventually distribute over the three

phases. The labelled cell subpopulation which is initially not

balanced will return asymptotically to balanced growth conditions,

restoring the corresponding proportions of cells in the three

phases. We refer to this transient dynamics of a selected

subpopulation as transient unbalanced growth. It turns out that

measuring the transient dynamics of this subpopulation yields

information that potentially allows to distinguish between a fixed

and a purely exponentially distributed phase completion time.

More specifically, a mathematical proof will show that taking

samples at three well chosen time points (support points) permits

under ideal conditions accurate estimation of the average and the

variability in the time required to complete the phase o:
The initial average fraction of cells in phase o which are

selectively labelled at time t0 is determined by Eq. 10. To predict

when the labelled cells will have completed o, we need to specify

when they entered this phase. For the time before labelling the

average influx into o is proportional to emt. For the time after the

labelling, because by definition all labelled cells entered phase o
before t0 (otherwise they would not be labelled ‘as being in phase

o’), the entry of cells is zero. Hence, the average influx to the

labelled subpopulation is proportional to H(t0{t)em t, where H
denotes the Heaviside step function. Let us assume that within the

subpopulation of labelled cells and their progeny one could

identify how many phases a cell or a cohort of cells went through

since the labelling event, and let P count the number of phases

since labelling.

In close analogy to expression Eq. 5 we compute the time-

dependent exit-rate density distribution for cells with P~0 as

co

0?1
(t)~

Ð t

{? H(t0{x)emxfto (t{x)dxÐ t0
{? H(t0{x)emxRto (t0{x)dx

~

Ð t0
{? emxfto (t{x)dxÐ t0

{? emxRto (t0{x)dx

~
mLmffto (tzt)g
1{Lmffto (t)g for t0~0:

ð18Þ

A Stochastic Phase-Resolved Cell Cycle Model
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where, for convenience, we interpreted and will interpret in the

following o both as a phase and a phase index. As before, the third

row follows from the definition of the Laplace transform setting

t0~0:. On the left-hand side, the arrow from 0 to 1 represents the

transition from the initial phase o (P~0) to the next phase (P~1),

corresponding to the completion of the initial phase o: In contrast

to Eq. 5, the denominator accounts for the cells that entered or

initiated phase o sometime in the past, and did not complete this

phase until the instant of labelling t0 (and not at time t as in Eq. 5),

while the numerator, except for the altered average influx, remains

unchanged.

After computing Lmfft(tzt)g and substituting Lmfft(t)g using

Eq. 2, Eq. 18 yields for twt0

co

0?1
(t)~

mem(t{t0)

(aomz1)ebom{1
tvt0zbo

me
bozaobom{tzt0

ao

(aomz1)ebom{1
t§t0zbo

0
BBBBB@ : ð19Þ

It follows that the accumulated average cell flux that at time t

has completed o and progressed to the next phase is given by

Co

0?1
(t)~

ðt
t0

co

0?1
(x)dx, ð20Þ

which for t?? approaches one, reflecting the fact that all cells

will eventually complete o:
The Laplace transform of Eq. 20 writes as

Lv Co

0?1
(t)

n o
~

m z aovm { mebo(m{v)(1zaom)

v(ebom(1 z aom){1) (v { m) (1 z aov)
,

where v is, as before, the transformed variable corresponding to

t:
Within a cohort of cells isolated for instance in S phase, i.e.,

o~S, the accumulated average cell flux out of the subsequent

G2M phase can then be derived recalling Eq. 2 and using the

properties of the inverse Laplace transform as

CS

1?2
(t)~L{1

t Lv CS

0?1
(t)

n o
|

e
{bG2M v

1zaG2M v

( )
: ð21Þ

For an arbitrary cell cohort originally in o, the accumulated

average flux, completing P phases and entering the (Pz1)th phase

since isolation, can be written in general as

Co

P?Pz1
(t) ~L{1

t Lv C o

0?1
(t)

n o
|P

P

p~1

e
{bq(o,p)v

1zaq(o,p)v

( )
, ð22Þ

in which q(o,p) denotes a function which returns an appropriate

phase index. For p[N and o[fG1, S, G2Mg it is defined as

q(o,p) ~
def

w0z(p mod 3) if o~G1

w1z(p mod 3) if o~S

w2z(p mod 3) if o~G2M

0
B@ ,

where mod is the modulo operation, and w~fG1, S, G2Mg is

a vector of cell cycle phase indices. The function q(o,p) thus

returns, for increasing p, in a cyclical fashion, the cell cycle phase

indices, starting with o for p~0: Notice that Eq. 21 corresponds to

Eq. 22 for o~S and P~1:
Analytical expression for Eq. 22, although solved relatively

easily with modern algebra software, can become quite cumber-

some for values of P larger than six. In our case, deriving the

expressions for p up to a value of five was sufficient to simulate the

experiments.

Because we want to compare the model predictions with

experimentally measured cell frequencies, more interesting than

the accumulated fluxes are the expected proportions of cells inside

each phase over time. These can be computed using Eqs 20–22,

closely following the methodology outlined in [11,12]. For the

fraction of cells initially in phase o we have

no
0(t)~

no

em t
|(1{Co

0?1
(t)), ð23Þ

where the lower index 0 in no
0(t) indicates that this expression

describes cells which completed zero phases since t0: The first term

on the right hand side corresponds to the fraction of cells in phase

o at t0 divided by em t, which accounts for the total population

growth during the same interval. The second term stands for the

fraction of cells that remained in phase o up to time t relative to

the initial number of cells in this phase. By evaluating the integral

in Eq. 20, substituting in Eq. 23 and letting as before, without loss

of generality, the time of partition t0 be zero, we get for tw0

no
0(t)~

no

emt
|

1z
1{emt

(1zaom)ebom{1
t v bo

aome
bozaobom{t

ao

(1zaom)ebom{1
t § bo

0
BBBB@ : ð24Þ

Expressions for cells initially in S, G1 or G2M phase can be

obtained by substituting o by the respective phase.

If there were no cell division (i.e., m~0) we could readily obtain

the average fraction of cells that completed P phases at time t as

the difference between the cells that entered the Pth phase, i.e.,

C
P{1?P

(t), and those that left it, i.e., C
P?Pz1

(t), divided by em t: To

account for cell division, we need to multiply this difference by an

additional term lo
P, which increases by a factor 2 each time cell

cohorts make a transition from G2M?G1: This term is defined,

for each case, as follows: lG1

P ~2t
p
3
s, lS

P~2t
pz1

3
s and lG2M

P ~2t
pz2

3
s,

where the brackets in the exponent represent the floor operator.

In general we get for all consecutive phases for cells initially in

phase o the relatively manageable expression

no
p(t)~

lo
p|no

em t
|(Co

(P{1)?P
(t){Co

P?(Pz1)
(t)): ð25Þ
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As for Eq. 24, the resulting solutions are defined as piecewise-

continuous functions in time. Also notice that most expressions in

this section can be written in more compact, but less intuitive,

vector form, by dropping the initial phase index o and using bold

vector notation as before.

Learning from cell frequencies measured in transiently
unbalanced growing subpopulations

In this section we will show that data from the transient kinetics

generated by our thought experiment allows to accurately estimate

the average and the variability in the individual completion times.

The proof is based on the analytical expressions derived in the

previous section, and also on the assumption that the kinetics are

acquired under the ideal conditions of large population sizes and

no measurement errors. The latter condition, although clearly

unrealistic, can always be approached in practice by increasing the

number of samples at each support point.

For the sake of generality, consider a subpopulation of cells

that are in an arbitrary phase and are labelled at t0~0:
Assuming that the ‘label’ does not in any way affect the cell

cycle of the cells, the parameters a and b of the labelled

subpopulation are the same as those of the full population under

balanced growth. Under these conditions, we can obtain a using

Eq. 13 and Eq. 14 with the fractions ~nn of the full population

observed at time t0: Substituting a in the upper row of Eq. 24

and solving for m to find

m~
log (k~nn ){ log ~nnz(k{1)~nn0(t�0,b½)

� �
t�0, b½

, ð26Þ

where t�0, b½ denotes an arbitrary time point that lies in the

interval �0,b½, ~nn ~~nn 0(0) and ~nn 0(t) is the experimentally

determined equivalent of Eq. 24. This shows that the balanced

growth rate m is fully determined by only two support points, one

immediately after the partition at t~0 and a second at an

arbitrary t�0, b½: This also makes clear that placing more support

points in the interval t�0, b½ does not increase knowledge about m

nor the parameter values, under ideal conditions. Importantly the

uncertainty about the phase-specific variability discussed in

previous sections remains.

By replacing the same expression for a in the second row of the

right-hand side of Eq. 24 we get

~nn 0(t½b,?�)~
~nn e

(
k m t½b,?�{b m exp (bm)

exp b mð Þ{k
)

(k{1)=(k{ exp bmð Þ) : ð27Þ

After experimentally acquiring m and the phase specific k and

~nn 0(t½b,?�), this expression will depend on a single unknown b:

One can show that Eq. 27 is solved by a unique b: This follows

from the fact that the right hand side of Eq. 27 is a monotonically

decreasing function in b[½0, ln (k)=m� with corresponding values

lying in the interval ½~nn exp ({
k m t½b,?�

k
{1),0� while the left hand

side is positive by definition. Substituting the solution for b into

Eq. 13 yields the remaining parameter vector a:
Taken together this proves that in theory samples of the three

cell cohorts G1, S and G2M taken at three support points, a first at

t~0, a second at 0vtv min (b) and a third at tw max (b) are

sufficient to determine all the parameters of the model.

Conventional single pulse-labelling assays
The thought experiment analyzed so far, although conceptually

simple, poses a series of experimental challenges, that make a one-

to-one realization difficult. The technical difficulties lie mostly in

initially separating the cells according to their phase and in

following these cells as they enter the subsequent phases. A widely

used technique, namely DNA-nucleoside-analog pulse-chase

labelling experiments, generates nevertheless to a certain extent

Figure 2. DAPI-BrdU pulse-chase labelling FACS data. Samples taken at several time points after pulse labelling proliferating U87 human
glioblastoma cells with BrdU: The four gated populations are f lu, fu

G2M, fu
G1

and f ld which are defined precisely in the main text. Briefly, the subscript
indicates the phase at the instant of labelling, while the superscripts ‘u’, ‘lu’ and ‘ld’ refers to cells ‘unlabelled’, ‘labelled and undivided’ and ‘labelled
and divided’, respectively. The data was generated as described in the Experimental Methods section.
doi:10.1371/journal.pcbi.1003616.g002
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comparable data. The latter achieves the initial phase-specific

partitioning by exposing during a short time window proliferating

cells with a nucleoside analog (e.g., BrdU, IdU or EdU) that gets

selectively incorporated into the DNA of cells that are actively

replicating their genome. Measuring subsequently by FACS
simultaneously the DNA content and the amount of incorporated

nucleoside analog per cell permits to discern the three phases G1,
S and G2M immediately after the pulse. In addition, due to the

permanent staining property of the nucleoside analogs, it is

possible to follow, up to a certain degree, the labelled and

unlabelled cell cohorts over time. Several dies, such as Hoechst

33342, the dihydroanthraquinone analog DRAQ5, DAPI, and PI

are commonly available to stain DNA content in cells [27], and

can be used in combination with nucleotide analogs.

In theory, this method would largely correspond to the

hypothetical experiment that we analyzed so far. In practice

however, the overlap of the subpopulations in the FACS scatter

plots prevents the exact determination of the frequencies of cells

described by Eq. 24 and Eq. 25. For example labelled cells that

have completed the S phase but remain in G2M phase are

indistinguishable from those that did not complete the initial S
phase yet. As has been reported previously, only four different sub-

populations can be identified with reasonable accuracy [26].

These are:

N f lu: labelled undivided cells which at time of labelling (t0) were

in S phase (nS
0znS

1 )

N fu
G2M: unlabelled cells that were in G2M phase at t0 (nG2M

0 )

N f ld: first generation progeny of labelled cells which were

initially in S phase (
P4

p~2 nS
p )

N fu
G1

: unlabelled cells and progeny of cells that were in G1 at t0

accompan ied by t he progeny o f fu
G2M a nd f ld

(1{flu{fu
G2M{f ld)

where the corresponding populations in our thought experiment

are indicated in brackets. This shows that computing Eq. 25 up to

p~4 is sufficient to describe a complete in silico BrdU pulse

labelling experiment. The reason is that, using current protocols,

fluorescence of labelled cells becomes indistinguishable from

background as soon as the cells divide a second time. In other

words, cells that leave population f ld by dividing a second time join

population fu
G1

(see Fig. 2). For the experimental data, analyzed in

the next section, the fraction of labelled cells that completed two

cell divisions during the 12 hours time frame of the experiment is

negligible.

The population fu
G2M is the only sub-population that matches

directly the type of data considered before and its temporal

evolution follows as such Eq. 24. The remaining three populations

in contrast represent mixtures of cell cohorts whose kinetics could

be described individually by Eqs 24–25.

Learning from single pulse-labelling data
By analyzing two data sets from samples of BrdU single pulse-

labelling experiments, we tested the model and the effect of

population intermixing on the identification of the model

parameter values. The two cell lines considered were in vitro
cultured U87 human glioblastoma cancer cells (for details see

Materials and Methods) and in vitro cultured V79 Chinese

hamster cells (courtesy G. Wilson). We will refer to these data as

the U87 and the V79 data sets. Both data sets consist of samples

taken from asynchronously dividing cell populations at several

time points after a single BrdU pulse, with sample sizes ranging

from 5000 to 50000 cells each. Data points represent

simultaneous measurements of BrdU as well as DAPI or PI

(DNA content) in a single cell by fluorescent activated cell

sorting.

As a preliminary test we minimized the residual sum of squares

(RSS), i.e., least-squares fitting, of adequate mixtures of Eq. 24

and Eq. 25 to extracted frequencies at different time points after

the pulse. We found that, for properly chosen parameter values,

both data sets were reasonably well approximated by the model

predictions (Fig. 3 A).

While this indicated that the model captured some of the

relevant temporal characteristics of cell cycle progression, a

subsequent analysis revealed that an infinite number of different

parameter combinations fitted the measured frequencies with the

same minimal RSS (not shown). This implies that there exist,

given the available data, no single best-fit parameter combination,

but a whole region in parameter space that can explain the data

equally well.

When we then interrogated the same data by approximate

maximum likelihood (ML) estimation, using a simple ad hoc

likelihood function (see Materials and Methods), we found again

Figure 3. Model based parameter estimation. A: Best fit of the
model predictions (lines) to experimentally determined cell fractions
after BrdU pulse labelling (dots). U87: In vitro cultured U87 human
glioblastoma cancer cell line (three replicates). V79: In vitro cultured V79
Chinese hamster cells (single replicate) (courtesy G. Wilson). Best fit
paramet er values use d to compute model predict ions
(U87: a~f3:2,3:9,3:4g,b~f5:7,4:1,2:1g, V79: a~f1:6,1:1,0:5g,b~
f1:4,7:8,1:9g, units are hours). B: Approximate ML regions for the
parameters a and b associated to each phase (gray: G1, red: S, green:
G2M). C: Bayesian bi-variate 99%-credibility regions for the parameters
a and b for each phase. Arrows indicate point estimates and the dashed
lines delineate the information that could have been gained in our
thought experiment under noise-free conditions from two support
points, one at t~0 and a second at tv min (b). The U87 data set was
generated as described in the Experimental Methods section. The V79
data set was a kind gift of G. Wilson.
doi:10.1371/journal.pcbi.1003616.g003
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that relative large regions in parameter space mapped to the same

ML (see Fig. 3 B). It turned out that these regions were entirely

superimposed onto the lines defined by Eq. 13 and Eq. 26 (dashed

lines). These lines define what could have potentially been learned

in our thought experiment with only two support points, one at

t~0 and a second at tv min (b). In both experiments, ML

parameters associated with the G1 phase were spread out almost

everywhere along these lines (Fig. 3 B, gray regions). Parameters

related to the S phase were more concentrated but still in the case

of the V79 data a substantial region of ML estimates were

observed. Finally the region for the G2M phase parameters

approached that of a point estimate for both data sets.

The spread of the ML estimates suggests that even in the ideal

case of large population size and noise-free data, the specific

choice of the support points in these experiments does not allow to

determine uniquely neither the delay nor the standard deviation

for all the phases. In contrast the average completion time for each

phase and the total division time can be estimated with relatively

high precision.

To better quantify the uncertainty of these estimates, Bayesian

99% credibility regions (CR) were computed by the Markov chain
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Figure 4. Dual pulse protocol. A: Simplified schematic representa-
tions of the protocols corresponding to a conventional single pulse
labelling with one nucleoside analog (e.g., BrdU) and a dual pulse
labelling experiment with two different nucleoside analogs (e.g., BrdU
together IdU or EdU). B: Artificial staining of single-pulse labelling data
(for original data see Fig. 2), showing eight of the nine subpopulations
that could potentially be identified with double-pulse labelling. Notice
that the four population f lu, f ld , fu

G1
and fu

G2M that can be followed by
the conventional protocol, have each been subdivided according to the
cell cycle phases. The naming convention for the populations is as
follows: the superscript (lu = ‘labelled undivided’, ld = ‘labelled divided’,
u = ‘unlabelled’) indicates whether the population is labelled and
whether it has divided since the time of the first pulse; the first and
the second subscript (G1, S, G2M) stand for the phase in which the
population was at the time of the first and the second pulse
respectively. Double subscripts are used only when necessary.
doi:10.1371/journal.pcbi.1003616.g004
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Monte Carlo method (MCMC) using the same likelihood function

as before (Fig 3 C). CRs followed mainly the same trends as the

regions observed in the ML estimates, covered however as

expected a larger volume. An exception was the ‘blown up’ CR

of the S phase parameter for the U87 cell line, for which the ML

estimates wrongly insinuated a well defined point estimate.

In Table 1 we summarized the obtained Bayesian summary

statistics. One can see that the intervals for the average duration of

each phase azb are narrow compared to those for the individual

parameters a and b. In both cases the data allows for a

deterministic S phase (a~0), while for the U87 data set variability

in G2M is a necessary characteristic to reproduce accurately the

data. Notably, when contrasting the two cell lines, are the short G1

phase of Chinese hamster cells and the approximately two times

more extended G2M phase of the human glioblastoma cell line. It

is out of the scope of this paper to interpret or relate these

differences to cell line specific conditions. More importantly in this

context is the fact that the information of the analyzed data is too

sparse to narrow down all the parameter values even under noise-

free conditions.

Redesigned dual pulse-labelling assay
The information extracted from the U87 and V79 data sets is

apparently insufficient to pinpoint all six parameters related to the

three phases of our simple cell cycle model. This is disappointing

especially because the number of support points largely exceeds

the three ideally required, and the support points seem to include

at least for the U87 data set one at t~0, a second at

0vtv min (b) and a third at tw max (b):
A potential explanation for this poor resolution in the estimates

is the previously mentioned intermixing of the cell population

clusters in the BrdU versus DAPI scatter plots compared to the

ideal conditions discussed earlier. The cluster overlap in the data

makes it impossible to measure directly the frequencies of most of

the populations, including the cell cohorts described by Eq. 24.

In order to approach the conditions assumed in the thought
experiment by avoiding the loss of information caused by the

intermixing, we devised an extension of the current single pulse

protocol, which places a second pulse immediately before

measuring or fixing each sample (see Fig. 4, top). The second

pulse is expected to expose the cells with a further nucleoside

analog that can be distinguished from the first one by FACS:
Depending on the cell cycle kinetics and the length of the

measuring period, the additional pulse increases the number of

classifiable populations from four up to nine distinct populations.

To appreciate the additional populations identified by double

pulse labelling, data from a single pulse-chase labelling experiment

was artificially colored, to mimic the expected FACS output from

proliferating cells labelled according to the protocol described

before. In Fig. 4, besides the gates defining the populations f lu, f ld ,
fu

G1
and fu

G2M, cells that have incorporated the second label are

drawn in red. For the time immediately after the pulse (i.e., t~0),

no extra information is gained by the second pulse. However,

already two hours later, one additional population can be

discerned. Twelve hours after the first pulse, seven population,

instead of three, can be recognized. Thus by resolving the four

initial population according to the cell cycle phases, it is possible to

measure the kinetics of nine subpopulations (f lu?ff lu
S ,f lu

G2Mg,
f ld?ff ld

G1
, f ld

S , f ld
G2Mg, fu

G1
?ffu

G1,G1, fu
G1,S, fu

G1,G2Mg, and

fu
G2M?ffu

G2Mg). Because all these kinetics depend on the cell

cycle parameters, each of them can in principle tell us something

about the phase completions times. However some information is

redundant. For example if f lu
S and f ld

S are measured, then fu
G1,S is

defined by the total fraction of cells in S phase, because

nS~f lu
S zf lu

S zfu
G1,S: Similarly from f lu

G2M, f ld
G2M one can deduce

fu
G1,G2Mzfu

G2M, by knowing the frequency of cells in G2M phase.

Double-label experiments using pairs of nucleoside analogs like

BrdU, IdU and EdU, also in combination with radioactive

tritiated thymidine (½3H�), have been explored in several cancer

cell proliferation studies [19,28–31]. In recent years, dual pulse

experiments using BrdU in combination with EdU have become

more common. Studies relying on this method estimated changes

in DNA replication, inferred mitochondrial DNA bio-genesis and

stained proliferating cells in the bone marrow in vivo [32–34], in

general with the aim to increase the statistical power of the

conventional methods.

To assess if the latter method would allow quantifying more

accurately and precisely the parameters of the model, we

generated in silico data mimicking the output of a hypothetical

dual pulse experiment using Eq. 24 and Eq. 25 (see Fig. 5 A). We

found that by employing the redesigned protocol with the same

replicates and time points as in the corresponding data sets, we

could reduce the regions corresponding to the ML up to point

Figure 5. Analysis of simulated dual pulse labelling data. A:
Average kinetics of unlabelled (dashed line) and labelled cell
cohorts (colored lines) were computed from Eq. 25, using ML para-
meter est imates from the U87 and the V79 data sets
(U87: a~f7:1,3:9,3:6g, b~f1:9,4:1,2:1g, V79: a~f1:4,2:3,0:5g, b~
f1:4,6:5,2:0g, units are hours). Support points and repeats were chosen
according to the real experiments. Multinomial noise was added,
mimicking the residuals found in the original data sets (see the
Computational Methods section for more details). Finally, model
solutions (lines) were fitted to the synthetic data sets (triangles).
Best fit parameters (U87: a~f7:5,3:2,4:5g, b~f1:7,5:3,2:0g, V79:
a~f1:2,2:5,0:4g, b~f1:4,6:2,2:1g, units are hours) B: ML parameter
estimates from simulated data. All ML regions converge to point
estimates (arrows). Squares indicate parameters used for generating the
data (see A). C: Bayesian bi-variate 99%-credibility regions for the
parameters a and b for each phase, based on the artificial data.
doi:10.1371/journal.pcbi.1003616.g005
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estimates (Fig. 5 B). Furthermore, the uncertainties due to noise

became also significantly smaller (Fig. 5 C). Pooling this artificial

data according to the output expected from a single pulse

experiment, reproduced again the uncertainties seen in Fig. 3 C

(not shown). Together this indicates that the redesigned dual pulse

protocol provides parameter estimates with higher accuracy and

precision. Real dual pulse labelling experiments will however be

needed to confirm these theoretical predictions.

Robustness of the estimates to other probability
distributions of the phase completion times and to
concurrent cell loss

The cell cycle model introduced here is deliberately simple and

neglects cell loss. In this section, we ask whether the estimates of its

parameters are reasonable when some of the simplifying assump-

tions of the model do not hold. Specifically, we ask how accurate

are the mean and standard deviation of the phase completion

times estimated using this simple model if the true completion

times were not distributed as a delayed exponential function or if

there was concurrent phase-specific cell loss.

Empirical measurements [35] indicate that the cycle phase time

for the S phase is distributed closer to a delayed hypoexponential

or a delayed gamma distribution (see below) rather than the

caricatural delayed exponential. Therefore, an important question

which arises is how much do the estimates of the average and

standard deviation in phase durations obtained with this simple

model depend on the true underlying distribution? While many

different scenarios could be tested we opted to fit a delayed

hypoexponential density with two decay and one delay parameter

to direct in vitro measurements of G1 and S phase durations

employing fluorescent biosensors (Fig. 6 A-B, [35]). Using the

obtained best-fit estimates, we then performed in silico dual-pulse

labelling experiments, in which the phase durations were drawn in

the case of the S and G1 phase from delayed hypoexponential

density functions (Fig. 6 C). Finally we fitted the simple model, i.e.,

Eq. 24 and Eq. 25, which is based on delayed exponential

distributions, to this data, to see if we could recover the original

averages and standard deviations despite using the ‘wrong’

caricatural model. Both summary statistics (i.e., mean, standard

deviation) of phase durations could successfully be re-estimated

(Fig. 6 D). Although generalizing this finding lies out of the scope

of this article, it suggests that even if the true underlying

distribution is not a delayed-exponential function, important

quantities like the average and standard deviation of the phase

durations may still be estimated with the simple model developed

herein. It also indicates that BrdU labelling experiments with a

realistic number of samples are unlikely to have the power to

discriminate between delayed exponential and more complex

density distributions.

We now turn to the issue of how much the presence of phase-

specific cell death (or loss in general), which is unaccounted for in

our model, affects the accuracy of the estimates of the mean and

standard deviation of the phase durations. To this end, we will first

introduce the extensions necessary to describe cell death in the

model. We rely on the fact that if the probability of death per cell

cycle is less that 50%, the average population size will

asymptotically grow exponentially with an effective growth rate

n, where 0vnvm: This implies that the arguments used to analyze

exponential growth without death remain valid for a model that

allows moderate levels of cell death.

Figure 6. Robustness of parameter estimates to empirical phase duration distributions that are not delayed exponential functions.
A-B: Least-squares fitting of histograms predicted from a hypoexponential distribution with two decay and one delay parameter fa0,a1,bg to
measurements of phase durations using fluorescent biosensors [35]. The number of cells that were tracked in the original study was around 15 cells.
C: Best fit of the cell cycle model with delayed exponential completion time distribution densities to synthetic data generated from a model with
hypoexponential completion time distribution densities for the G1 and S phase with parameters as in A and B. D: Recovery of the initial distribution
densities (solid lines) using the delayed exponential model (dashed line). Both the average and the variability in the S phase completion time
distribution (original average: 10.70 h, estimated average: 10.88 h; original std: 2.03 h, estimated std: 1.99 h) were estimated accurately. The data
shown in A-B was read from the graphs in the original publication ([35]).
doi:10.1371/journal.pcbi.1003616.g006
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To consider death, we assume that cells have two possible fates

per phase, either they progress to the next phase or they die. Let

ft(t), as before, be the phase completion time density, conditioned

however on the cell being alive at time t: And let fd(t) be the

phase-specific time to death density conditioned on the cell having

not progressed to the next phase. Then, as e.g., in [36], assuming

that both events compete with each other (i.e., whatever fate

happens first, prevents the other), the resulting density f(t,d)(t)

becomes

f(t,d)(t)~ftRd(t)zfdRt(t): ð28Þ

Consider now a scenario of an exponentially growing popula-

tion, in which cell death occurs exclusively during phase o: Let us

assume further that the o{phase specific time to death density

fdo
(t) is a simple exponential density with mean r: Using straight-

forward probabilistic arguments, we can compute analytically, for

this simple scenario two important quantities, namely the

probability to die in this phase (pdo
), and the expected value of

the effective completion time, distributed as f(t,d)(t): We get

pdo~

ð?
0

fdo (x)Rto (x)dx~1{
r

rzao

� �
e{bo=r, E½f(t,d)(t)�~rpdo :

Note that, in this simple case, pdo
is also the probability to die

per division cycle.

Evaluating Eq. 18 using f(to, do) instead of fto
, we obtain for Eq.

24,
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where md and no
d represent the equivalents of m and no, we had

previously defined for the case of no cell loss. The former

quantities, which now depend on ro, are derived applying to Eq. 5

the same substitution as above. Expressions equivalent to Eq. 10

and Eq. 11 are obtained along the same lines. These become

however rather lengthy and are therefore omitted here. Eq. 29

reproduces accurately f lu
S in simulated BrdU pulse labelling

experiments, if death occurs, as specified above (see Fig. 7 A for

an example with o~S and pdS
[ 0:0,0:3f g). The differences

between the analytical predictions for f lu
S with 30% death and

without death (denoted by Df lu
S ) are, for the parameter sets that we

tested, relatively small, and vanish as expected, as pdS
tends to zero

(see Fig. 7 B for Df lu
S computed at one specific time point (t~4 h)

for different values of pdS
).

To further test, how much both cell death and a completion

time with a shape distinct from a delayed exponential may jointly

affect parameter estimates, we simulated BrdU pulse labelling

experiments, where two major assumptions underlying Eq. 24

were simultaneously violated. First, we assumed a delayed gamma

distribution (with shape parameter of two) for the completion time

of each phase. Second, we considered cell death during S phase,

and adjusted rS, such that pdS
was either zero or 0:3: The

population size (starting with five cells) took about twice as much

time to grow to a similar size for pdS
~0:3 compared to a the

scenario without death (see Fig. 7 C, middle column, for five

independent simulations). In addition, the variability in the

population sizes between the simulations appeared higher for

increased death rates. In contrast, when estimating the mean and

variance of ftS
by non-linear least squares fitting using Eq. 24, the

marked changes seen in the population kinetics where not

paralleled by changes in the estimates. Both the mean and the

variance were accurately determined in both cases (see Fig. 7 C,

right column). Taken together, this suggests, that the estimates for

the mean and variance of ftS
using Eq. 24, at least for the

reasonable parameter values that we tested, are relatively robust to

simultaneous changes in the shape of the completion time, and

moderate levels of cell death.

Discussion

In this article, we propose a simple stochastic model that aims at

approximating the time it takes for a cell to accomplish the

sequential phases of the cell cycle, by defining the completion time

in each phase as a delayed exponential density distribution. At first

sight this might seem a gross oversimplification of all the processes

involved. However, when compared with experimental data, this

simplistic model performs surprisingly well.

While the observation that the model reproduces closely the

experimental time series has to be interpreted with care, we think

its success can be explained by the fact that the probability rule

captures simultaneously two important regimes of complex

biochemical processes that qualitatively differ in their completion

time distribution. As was shown recently by Bel et al. [37] the

completion time for a large class of complex theoretical

biochemical systems, including models for DNA synthesis and

repair, protein translation and molecular transport, simplify either

to deterministic or to exponentially distributed completion times,

with a very narrow transition between the two regimes depending

on the rate parameters. These are precisely the ‘ingredients’ of the

delayed exponential distribution. Under this light our model could

be naively interpreted as a sensor that measures approximately the

relative contribution of delay and decay processes in each of the

cell cycle phases. However, whereas delays connected in series

form again a delay, this is not true for decays. Sequentially coupled

decays form a process with hypoexponential distributed comple-

tion times with a shape similar to the frequency distribution of cell

cycle phase completion time reported in [35]. Thus a more flexible

model for the completion time of each phase could be a

hypoexponential distribution of the family that we are currently

using to model the total cell cycle length distribution (i.e., Eq. 3). If

instead, processes are not connected in an ordered series but

rather concurrent, the times for all the processes to complete is

dominated by the largest delay or the smallest decay parameter.

It is tempting to interpret the relative weight of constant delay

and exponential decay (i.e., the coefficient of variation) as a

measure of the precision of the processes regulating each phase,

which in turn might reflect a selective pressure on timing. Tighter

pressure might reduce the coefficient of variation, as our results

suggest for the S phase when compared to the remaining phases.

Yet, this might also reflect the conjunction of many parallel and

independent process such as replication forks whose number is

expected to increase the timing precision by the law of large
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numbers. In fact, the mean time and the variance of the S phase

are shorter in the early phase of the embryo when cells display a

higher number of replication forks in which the DNA polymerase

progresses at the same rate [38].

An important simplification of our model consists in the

assumption that cell loss by death, differentiation or immigration

is small compared to population wide division rates, such that we

can neglect it when fitting the model to experimental data. The

main reason to adopt this approach was simplicity and the fact

that the available data sets did hardly permit the determination of

the possibly large number of additional parameters. While for the

U87 LIFE/DEAD discrimination was performed, the markers

used for gating are specific for late stages of apoptosis or necrosis

typically after membrane integrity is lost and therefore do not

necessarily reflect the true fraction of dying cells. The fraction of

dead cells identified and excluded by this method was typically

low. In case that experimental conditions would however suggest

substantial cell loss, the model is flexible enough to be adapted

without major technical difficulties, along the lines of Eq. 28 and

Eq. 29. For instance, when the number of new-born cells equals

the number of dying cells, solving the model analytically turns out

to be easier, because m~0: And given that the apoptotic state (e.g.,

defined by Annexin-V staining) would be measured simultaneously

with nucleoside incorporation and DNA content, this could open

up the possibility to assess the duration of apoptosis in vivo. These

potential extensions not withstanding, it is reassuring that

considering concurrent phase-specific cell death of up 30% may

not change the estimates of the mean and standard deviation of

the phase completion time obtained using a caricatural model that

neglects cell death, as our results indicate.

Another fundamental abstraction of our model is that the

completion times for the cell cycle phases of a given cell are

uncorrelated, which also implies uncorrelated division times of

parental cells and siblings. Even though positive correlation in

division times between parental and daughter cells [10] and

between siblings [36] has been observed recently in vitro by direct

long-term microscopy of activated proliferating B cells, Schultze et
al. reported many years ago for in vivo murine crypt epithelial

cells the lack of correlation of completion times of a cell through

successive phases [31]. It remains to be shown experimentally how

much of the correlation or lack of correlation is due to cell type or

environment. In any case, it would be interesting to extend the

present model to include correlation in phase completion times.

The live cell biosensor-based fluorescent imaging strategy

exploited in [35] allows for direct quantification of the stochastic

timing of the cell cycle phases. It is worth comparing the estimates

of cell cycle phase-specific completion times obtained with this

direct method with those provided by the indirect pulse labelling

method. The mean S phase completion time was reported for the

lines NCI-H292 and HeLa cell line to be 8.2 and 8.4 hours

Figure 7. Effect of cell death and completion time distribution on parameter estimates. A: Comparison of analytical predictions (lines, Eq.
29) with simulated BrdU labelling experiment (squares). Cell death is assumed to occur exclusively during S phase with probability 0 (red) and 0.3
(blue) respectively. Only the f lu

S population is considered. Parameters: a~f2:5, 2:0, 1:5g, b~f1:0, 5:0, 0:5g, units are hours. B: Difference between
Eq. 29 (accounting for cell death) and Eq. 24 (neglecting cell death) at time t~4 h (see dashed line in A), as a function of pdS

: C: BrdU labelling
experiments were simulated assuming gamma distributed phase completion times (red curve, graphs on left column) and cell death during S phase
with probability pdS

~0 and pdS
~0:3 (green curve, graphs on left column). The effective completion time f(t,d) (gray density plot, left column), the

population growth (middle column) and the estimation of the mean and the standard deviation of ft are shown for both cases. Approximate
confidence intervals for the estimates are computed as 1.96 times the standard error. Even though f(t,d) and the population growth are strongly

influenced by the value of pdS
, both f lu

S and the estimates extracted from f lu
S are barely affected. The dashed lines in the middle column indicate the

time of the first pulse, which was chosen such that the average population was similar in both scenarios. Parameters for gamma distributed
completion time distribution of the three phases: shape: k~f2:0, 2:0, 2:0g, scale: h~f1:25, 1:0, 0:75g, delay: b~f1:0, 5:0, 0:5g:
doi:10.1371/journal.pcbi.1003616.g007
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respectively with standard deviation of 0.5 and 2.9 hours

(extracted from Fig.2 in [35]), which lie in the range of the

estimates we obtained, despite the different human cell lines that

have been analyzed (Table 1). In principle, pulse labelling with

nucleoside analogs can be used in vivo to quantify the stochasticity

of the cell cycle in anatomical places that are currently not feasible

to visualize by multiphoton microscopy, given that a sufficiently

large (over 1000) and representative sample of cells can be

harvested. Our method therefore provides, concerning the G1, S
and G2M phases, very similar information as these imaging

methods, yet it has a much wider application scope.

In comparison with the Smith and Martin cell cycle model, that

assumes a single variable phase [5], we have proposed a more

complex model with three variable phases. A question can be

raised whether a less complex model with variability in only one or

two of the three phases would reproduce equally well our BrdU

pulse labelling data. This could simplify the analysis and reduce

the issue of parameter identification. One might, for example,

consider a scenario, similar to the double transition probability

model analyzed in [39], in which the G1 and the G2 phase have

delayed exponentially distributed durations, while the durations of

S and M phase are fixed. It is easy to see that such a less complex

model is embedded into our model, as it suffices to set aS~0,
while assuming that the variability in the duration of the G2M
phase is generated entirely during the G2 phase. Clearly, from a

data fitting perspective, and especially for the V79 data set, the

simpler embedded model and the larger model would perform

equally well. This can be read directly from Fig. 3, as the set of

approximate ML estimates for aS includes values that are equal or

close to zero. However, the interpretation of the V79 data set

based on these two models would be fundamentally different. For

instance, by relying on the deterministic model, one would be lead

to conclude that the S phase duration is for every cell about

9 hours. By allowing however for aS§0, possible interpretations

of the data encompass the latter case, but in addition include

scenarios in which some cells complete their S phase in about

7 hours, while other cells may take far longer. Even though the

original data does not permit to discriminate between these

models, simulated dual pulse labelling experiments indicate that

this is in principle feasible. Finally, in view of the experimental

data provided by Hahn et al. ([35], used in Fig. 6 B), the scenario

of variable S-phase duration with aS§0 is well justified.

On the other hand, we distinguished only three cell cycle

phases, although the cell cycle is typically structured into at least

four biologically distinct phases. This simplification stems from the

fact that quantification of DNA content by flow cytometry cannot

discriminate between cells in the G2 and M phase. Additional

biomarkers, such as pS780 reported by Jaccoberger et al [40],

could be used together with DNA content dyes and nucleoside

analogs in extended labelling protocols to identify the four main

cell cycle phases. Extending the model to distinguish accordingly a

fourth phase would be rather straightforward mathematically.

Despite restricting the model to three phases, it is worth noticing

that we are extending the work of Cain and Chau [39,41], who

studied both balanced and non-balanced growth conditions,

assuming one and two random transitions, mapped respectively

to part of G1 and the remaining cell cycle phases. Also, we extend

the work of Larsson et al. [42] who were able to infer the variation

in the completion times of S and G2 based on the histograms of

DNA content.

Long-term labelling with BrdU has been used in vivo to study

disease progression of infected rhesus macaques with the simian

immunodeficiency virus [1,43] and due to toxicity more rarely in

HIV-1 [44]. These studies typically targeted turnover rates of T

lymphocytes subpopulation over a time period of several weeks

and provided average birth and death rate estimates. In contrast,

the method outlined here measures cell proliferation at a much

short timescale (12{24 hours) and has the potential to yield

phase specific estimates of both the average and the variability of

completion times. We anticipate that valuable complementary

information about SIV and HIV infection could be gained using

the redesigned protocol proposed here, especially in the light of the

known modulation of the cell cycle checkpoints by accessory viral

proteins [45].

Recently, in a computational ‘tour de force’, Falcetta et al.

[25] used a stochastic model of cell cycle progression with

discrete age-structure to derive qualitative conclusions about the

mechanism of action of several anti-cancer therapies. This

model was able to mimic (in their wording ‘rendering’)

quantitative data on single BrdU pulse labelling assay and

time-lapse imaging. The empirical distribution cell cycle lengths

they reported is akin to the hypoexponential family in our

model, however, the distributions of phase lengths remain

implicit in their simulation framework, in which time is discrete

and the parameters are transition probabilities per time step.

This prevents knowing how uncertain are the estimates of the

phase length variances based on single pulse labelling using their

approach.

Dual pulse labelling with a pair of thymidine analogs has been

used before to study cell cycle kinetics [19,28,31]. What is

common to those studies is scheduling the two consecutive pulses

by fixing the time lapse between the pulses, irrespectively of the

time at which cell samples are collected for cell cycle phase

analysis. It is worth stressing that, according to the present study,

specially when the second pulse is timed according to each

individual sample (i.e. adjusting accordingly the interval between

pulses) one can harness the potential of the model to quantify the

mean and variance of the phase-specific time. Making the second

pulse at a fixed minimal time before collecting cells for analysis

allows to resolve cellular cohorts, which would otherwise be

confounded.

New technologies like the one developed by Hahn et al. [35] but

also the ubiquitination-based cell cycle indicator, termed ‘Fucci’

[46] will greatly increase our understanding of phase resolved cell

cycle progression and unveil its epigenetic and stochastic

variability in isogenic cell populations. To translate this knowledge

gained mainly from in vitro cell cultures into an in vivo context,

long term (greater than 12 hours) and continuous multi-photon

imaging may be required. This however is technically very

demanding, and may remain prohibitive for cells deep inside

tissues despite major technological advances in the field. The

methodology presented here allows to measure phase specific cell

cycle progression variability in vivo by relatively simple technical

means. Even though nucleoside analogs are potentially carcino-

genic, the adverse effects of low dose pulse labelling remain

typically undetectable. Determining accurately cell cycle progres-

sion variability in mouse models of cancer might become a crucial

step in understanding the high variability in susceptibility to cell

cycle specific anti-cancer drugs.

Materials and Methods

Stability analysis
Here we will show that a cell population that follows the

stochastic model specified before will eventually enter a stationary

exponential growth phase. The requirement for such an asymp-

totic behavior is, recalling Eq. 11, that the complex valued

function
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Q(m)~2{P
i

(ebimzaimebim) ð30Þ

has for positive valued elements of the vectors a and b a unique

positive real root which represents the upper bound of the real part

of any of its other potentially infinite number of roots. The

complex numbers m that solve Eq. 30 correspond, according to our

model, to the stationary phase growth rate of the proliferating cell

population. In case that m is real, the population is growing

exponentially, while if m is purely imaginary growth is oscillating.

In general, roots have both non-zero real and imaginary parts,

which leads to oscillations with growing or decaying amplitude. If

for real x and y we write m~xziy the real and imaginary part of

Q(m) are computed as

Re(Q) ~2{eBx y1 cos (By){y2 sin (By)ð Þ,

Im(Q)~{eBx y2 cos (By)zy1 sin (By)ð Þ, ð31Þ
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For m to be a root of Q, both real and imaginary part have to

vanish.We restrict our analysis to the positive complex half

plane, i.e. x§0, since we are interested in growing and

not contracting cell populations. Due to the symmetries

in the trigonometric functions sin ({y)~{ sin (y) and

cos({y)~cos(y) and y1({y)~y1(y) and y2({y)~{y2(y)
one can easily see that if m~xziy is a root, its complement

m�~x{iy is also a root. We can thus reduce the analysis even

further to values with positive imaginary parts. If for fixed x we

plot Q in the complex plane as a parametric function of y[½0,?�
we get a spiral with the distance from a center point c~2 zi 0
given by

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re(Q){2ð Þ2zIm(Q)2

q
,

~eBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i
((1zaix)2za2

i y2)

r
: ð33Þ

Crucially, as r is a monotone increasing function of y, the spiral

never crosses itself. For y~0 the imaginary part of Q vanishes as

expected because limy?0 sin (wy)~0 and limy?0 y2~0: For this

special case Re(Q)~2{Pi (ebimzaimebim) is obviously mono-

tone decreasing with x and restricted to the interval ½1,{?�: This

means that the spiral can only ‘start’ in the interval between one

and minus infinity. Taken together, this implies that if for y~0
and fixed x, the real part of Q is positive, then there exist a single

‘opportunity’ to cross the origin, while if negative there exists none.

At the border where the real part is zero (Fig. 8 C), the

corresponding value of x is the only positive real root. Due to the

monotonicity of Re(Q) any value of x greater than the positive

real root will result for y~0 in Re(Q)v0 which does not admit for

any solution. The different possible scenarios are exemplified in

Fig. 8.

Experimental methods
Cell culture. Human astrocytoma cells U-87 MG (ATCC-

LGC) were routinely cultured with Dulbecco’s modified Eagles

medium (DMEM, Biochrom AG) supplemented with non-

essential amino acids (NEAA, Invitrogen GmbH), heat-inactivated

fetal bovine serum (FBS, 10%, Biochrom AG) and additives

(penicillin-streptomycin-glutamine, Invitrogen GmbH) in plastic

flasks (TPP AG) at 37uC in 5% CO2-humified incubators and were

passaged twice a week using Dulbecco’s PBS (DPBS, Apotheke

Innenstadt Uni Mnchen) and Trypsin/EDTA (Biochrom AG)

before reaching confluence.

Figure 8. Stability analysis. Q(xziy) as a function of y§0 for fixed
values of x§0: For y~0 (green circle) the real part of Q takes,
depending on x[½0,?�, a value in the interval ½1,{?�: The values for x
are increasing from A-D, while a and b remain unchanged. For relatively
low values of x (A-B) the real part Re(Q) is positive for y~0: After one
or several turns, i.e by increasing y the spiral can potentially cross the
origin only once (empty circle). In A the spiral misses the origin, while in
B the spiral crosses the origin after one turn. Crossing of the origin
means that the corresponding complex number m~xziy is a root of Q.
In C the spiral starts at the origin. This represents the only real positive
root of Q. For initially negative values of Re(Q) (D) the spiral can never
cross the origin because the distance to the center point (gray circle) is
already in the beginning for y~0 larger than the distance between the
latter and the origin. By increasing y this distance will even grow further
according to Eq. 33.
doi:10.1371/journal.pcbi.1003616.g008
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Treatment with BrdU. For cell cycle analysis cells

(2.06104 cm22) were seeded in 75 cm2 culture flasks and

incubated for 24 h followed by the BrdU pulse. For this

purpose, medium was replaced by medium supplemented with

BrdU (10 mM, Bromodeoxyuridine, Becton Dickinson GmbH),

cells were incubated for 30 min at 37uC followed by washing

away of BrdU for two times with fresh medium. Cells were

then again incubated at 37uC for a designated period of time

(0 h, 2 h, 4 h, 6 h, 8 h, 12 h) to measure proliferation over

12 h.

Preparation of samples. Collecting of cells was performed

by trypsinization using DPBS, Trypsin/EDTA and medium

followed by washing of cells in DPBS. To exclude dead cells from

the analysis staining of dead cells was performed. For this purpose

cells were incubated for 30 min with fluorescent dye (LIVE/

DEAD Fixable Green Dead Cell Stain Kit, Invitrogen) according

to the manufacturers instructions followed by washing with DPBS.

Consequent steps of sample preparation were processed using the

APC BrdU Flow Kit (Becton Dickinson GmbH). Cells were

washed once with Perm/Wash Buffer and fixed for 30 min on ice

with Cytofix/Cytoperm Buffer. After washing with BD Perm/

Wash Buffer cells were resuspended in Cytoperm Plus Buffer and

incubated on ice for 10 min followed by washing with Perm/Wash

Buffer and incubation in Cytofix/Cytoperm Buffer for 5 min on

ice. Cells were then washed with Perm/Wash Buffer and

incubated with 2 M HCl-Triton (1%) for 30 min at room

temperature followed by washing twice with Perm/Wash Buffer.

For detection of incorporated BrdU cells were incubated with

diluted (1:50) fluorochrome-conjugated anti-BrdU antibody for

20 min at room temperature. Cells were then washed with BD

Perm/Wash Buffer and further incubated with DAPI (0.5 mg=ml
in staining buffer: 100 mM Tris, pH 7.4, 150 mM NaCl, 1 mM

CaCl2 0.5 mM MgCl2 0.1% Nonidet P-40) for 30 min at room

temperature. All samples have subsequently been stored on ice

until acquisition.

Acquisition and analysis. Acquisition of data was per-

formed by measuring fluorescence intensity using a BD LSR II

Cytometer at the excitation wavelength of 660 nm for APC and

450 nm for DAPI and the software BD FACSDiva.

Computational methods
Modeling and simulations. Anti-derivatives, equations as

well as eigenvalue problems were solved with the help of

Mathematica. Stochastic simulations, Markov chain Monte Carlo

and optimization algorithms (e.g. least square fitting and Newton-

Raphson root finding) were implemented in C++. To fit the

parameters of the model to the data we relied on the population

based covariance matrix adaptation evolution strategy provided by

the C++ library SHARK [47].

In silico data. In order to anticipate and compare the

information content in data sets that could potentially be acquired

according to the dual-pulse protocol, in silico data was generated.

The simulated data consisted of frequencies computed according to

our model using ML parameter estimates. Noise was added to the

frequencies by simulating a sampling process with replacement with

frequencies given by the model and a population size of 300 and 600

for the U87 and the V79 data set respectively. This reproduced

approximately the variability observed in the original data sets. To

make comparison with available data reasonable support points

were taken to be the same as in the respective data set.

Bayesian inference. When estimating, by FACS analysis,

frequencies of cells in different phases of the cell cycle,

measurement noise becomes unavoidable. Potential sources of

noise include variability in experimental conditions, gating errors,

stochasticity in cell division, FACS measurement errors, and many

more. Here we describe an attempt to account, in a simple way,

for the observed experimental noise by taking a Bayesian

approach. This provides us not only with maximum likelihood

estimate regions of the model parameter, but in addition will give

us an idea about the uncertainty that we have about the parameter

values.

Even though considering all potential sources of noise would be

most consistent, the resulting probability model would become far

more complex than our initial cell cycle model. To avoid this

overload we assume that a relatively simple ad hoc multivariate

probability density function approximates reasonably well the

average and the noise in the observed frequencies at a single time

point. This probability density function, which corresponds to the

likelihood Pi of a single measurement event ~nni, is defined by

Pi(~nni Da,b,N; ti) ~C(N)P
k

j~1

~nn
N|ni,j{1

i,j

C(N|ni,j)
, ð34Þ

where C is the Euler gamma function. The right-hand side of

Eq. 34 corresponds to a continuous approximation of a scaled

multinomial distribution with support xj[½0,1� and
P

xj~1 [48].

The parameter N, which determines the spread of the distribution,

can be interpreted as an effective population size. Taking e.g., a

sample of size N from a population of cells containing k sub-

populations with proportions given by ni yields frequencies with a

probability density approximately distributed accordingly. If N is

small the density distribution is broad, while if N becomes large

the density distribution becomes narrow.

Following in general terms the notation in the main text, the ~nni,j

denote the k measured population frequencies from experiment i
and the ni,j stand for the corresponding frequencies predicted by

the cell cycle model. The latter obviously depend on the parameter

vector a and b and the time ti:
Having defined the likelihood Pi for an outcome of a single

pulse labelling experiment, the likelihood for the outcomes of a set

of m experiments is the product P~P
m

i~1 Pi under the

reasonable assumption that noise in a specific experiment is

independent of all the other experiments. By numerically inverting

P, using Bayes theorem, one can obtain the posterior and

subsequently the uncertainty over the model parameter given the

data, the model and prior knowledge.

To estimate the maximum likelihood regions, the posteriors and

the uncertainties in the a and b for the U87 and V79 data sets, we

implemented in C++ the adaptive Markov-Chain-Monte-Carlo

algorithm proposed in [49]. The estimates for the maximum

likelihood regions are obtained by fixing N to a very large value

(e.g., 105). For Bayesian inference, N was considered as an

additional parameter. For simplicity, improper priors uniformly

distributed over the positive real number were assumed for all

parameter. The first 106 steps of the initially 107 step-long chains

were discarded, and of the remaining chains every 10009th step

was included in the subsequent analysis. The credibility regions

were computed from the resulting MCMC chains using the

‘HPDregionplot’ routine in the R package ‘emdbook’, and

convergence of the chains were confirmed using the Gelman

convergence test.
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