24 research outputs found

    Overturned folds in ice sheets: Insights from a kinematic model of traveling sticky patches and comparisons with observations

    Get PDF
    Overturned folds are observed in regions of the Greenland ice sheet where driving stress is highly variable. Three mechanisms have been proposed to explain these folds: freezing subglacial water, traveling basal slippery patches, and englacial rheological contrasts. Here we explore how traveling basal sticky patches can produce overturned folds. Transitions from low to high stress cause a tradeoff in ice flow between basal slip and internal deformation that deflects ice stratigraphy vertically. If these transitions move, the slip-deformation tradeoff can produce large folds. Those folds record the integrated effects of time-varying basal slip. To understand how dynamic changes in basal slip influence ice sheet stratigraphy, we develop a kinematic model of ice flow in a moving reference frame that follows a single traveling sticky patch. The ice flow field forms a vortex when viewed in the moving reference frame, and this vortex traps ice above the traveling patch and produces overturned folds. Sticky patches that travel downstream faster produce larger overturned folds. We use the model as an interpretive tool to infer properties of basal slip from three example folds. Our model suggests that the sticky patches underneath these folds propagated downstream at rates between one half and the full ice velocity. The regional flow regime for the smaller two folds requires substantial internal deformation whereas the regime for the largest fold requires substantially more basal slip. The distribution and character of stratigraphic folds reflect the evolution and propagation of individual sticky patches and their effects on ice sheet flow

    Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Get PDF
    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations

    Traveling slippery patches produce thickness-scale folds in ice sheets

    Get PDF
    Large, complex stratigraphic folds that rise as high as 60% of the local ice thickness have been observed in ice sheets on Antarctica and Greenland. Here we show that ice deformation caused by heterogeneous and time-variable basal sliding can produce the observed structures. We do this using a thermomechanical ice sheet model in which sliding occurs when the base approaches the melting point and slippery patches develop. These slippery patches emerge and travel downstream because of a feedback between ice deformation, vertical flow, and temperature. Our model produces the largest overturned structures, comparable to observations, when the patches move at about the ice column velocity. We conclude that the history of basal slip conditions is recorded in the ice sheet strata. These basal conditions appear to be dynamic and heterogeneous even in the slow-flowing interior regions of large ice sheets

    On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling

    Get PDF
    Ice shelves play a key role in the stability of the Antarctic Ice Sheet due to their buttressing effect. A loss of buttressing as a result of increased basal melting or ice shelf disintegration will lead to increased ice discharge. Some ice shelves exhibit channels at the base that are not yet fully understood. In this study, we present in situ melt rates of a channel which is up to 330 m high and located in the southern Filchner Ice Shelf. Maximum observed melt rates are 2 m yr−1. Melt rates inside the channel decrease in the direction of ice flow and turn to freezing ∼55 km downstream of the grounding line. While closer to the grounding line melt rates are higher within the channel than outside, this relationship reverses further downstream. Comparing the modeled evolution of this channel under present-day climate conditions over 250 years with its present geometry reveals a mismatch. Melt rates twice as large as the present-day values are required to fit the observed geometry. In contrast, forcing the model with present-day melt rates results in a closure of the channel, which contradicts observations. The ice shelf experiences strong tidal variability in vertical strain rates at the measured site, and discrete pulses of increased melting occurred throughout the measurement period. The type of melt channel in this study diminishes in height with distance from the grounding line and is hence not a destabilizing factor for ice shelves.</p

    Freezing of ridges and water networks preserves the Gamburtsev Subglacial Mountains for millions of years

    Get PDF
    Once an ice sheet grows beyond a critical thickness, the basal thermal regime favors melting and development of subglacial water networks. Subglacial water is necessary for bedrock erosion, but the exact mechanisms that lead to preservation of subglacial topography are unclear. Here we resolve the freezing mechanisms that lead to long-term, high-altitude preservation across the Gamburtsev Subglacial Mountains in East Antarctica. Analyses of a comprehensive geophysical data set reveal a large-scale water network along valley floors. The ice sheet often drives subglacial water up steep topography where it freezes along high ridges beneath thinner ice. Statistical tests of hypsometry show the Gamburtsevs resemble younger midlatitude mountains, indicating exceptional preservation. We conclude that the Gamburtsevs have been shielded from erosion since the latest Eocene (∼34 Ma). These freezing mechanisms likely account for the spatial and temporal patterns of erosion and preservation seen in other glaciated mountain ranges

    Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment

    Get PDF
    Over the past 3 decades, inversions for ice sheet basal drag have become commonplace in glaciological modeling. Such inversions require regularization to prevent over-fitting and ensure that the structure they recover is a robust inference from the observations, confidence which is required if they are to be used to draw conclusions about processes and properties of the ice base. While L-curve analysis can be used to select the optimal regularization level, the treatment of L-curve analysis in glaciological inverse modeling has been highly variable. Building on the history of glaciological inverse modeling, we demonstrate general best practices for regularizing glaciological inverse problems, using a domain in the Filchner-Ronne catchment of Antarctica as our test bed. We show a step-by-step approach to cost function normalization and L-curve analysis. We explore the spatial and spectral characteristics of the solution as a function of regularization, and we test the sensitivity of L-curve analysis and regularization to model resolution, effective pressure, sliding nonlinearity, and the flow equation. We find that the optimal regularization level converges towards a finite non-zero limit in the continuous problem, associated with a best knowable basal drag field. Nonlinear sliding laws outperform linear sliding in our analysis, with both a lower total variance and a more sharply cornered L-curve. By contrast, geometry-based approximations for effective pressure degrade inversion performance when added to a sliding law, but an actual hydrology model may marginally improve performance in some cases. Our results with 3D inversions suggest that the additional model complexity may not be justified by the 2D nature of the surface velocity data. We conclude with recommendations for best practices in future glaciological inversions

    Greenland ice sheet surface runoff projections to 2200 using degree-day methods

    No full text
    Surface runoff from the Greenland ice sheet (GrIS) has dominated recent ice mass loss and is having significant impacts on sea-level rise under global warming. Here, we used two modified degree-day (DD) methods to estimate the runoff of the GrIS during 1950–2200 under the extensions of historical, RCP 4.5, and RCP 8.5 scenarios. Near-surface air temperature and snowfall were obtained from five Earth System Models. We applied new degree-day factors to best match the results of the surface energy and mass balance model, SEMIC, over the whole GrIS in a 21st century simulation. The relative misfits between tuned DD methods and SEMIC during 2050–2089 were 3% (RCP4.5) and 12% (RCP8.5), much smaller than the 30% difference between untuned DD methods and SEMIC. Equilibrium line altitude evolution, runoff-elevation feedback, and ice mask evolution were considered in the future simulations to 2200. The ensemble mean cumulative runoff increasing over the GrIS was equivalent to sea-level rises of 6 ± 2 cm (RCP4.5) and 9 ± 3 cm (RCP8.5) by 2100 relative to the period 1950–2005, and 13 ± 4 cm (RCP4.5) and 40 ± 5 cm (RCP8.5) by 2200. Runoff-elevation feedback produced runoff increases of 5 ± 2% (RCP4.5) and 6 ± 2% (RCP8.5) by 2100, and 12 ± 4% (RCP4.5) and 15 ± 5% (RCP8.5) by 2200. Two sensitivity experiments showed that increases of 150% or 200%, relative to the annual mean amount of snowfall in 2080–2100, in the post-2100 period would lead to 10% or 20% more runoff under RCP4.5 and 5% or 10% under RCP8.5 because faster ice margin retreat and ice sheet loss under RCP8.5 dominate snowfall increases and ice elevation feedbacks
    corecore