1,541 research outputs found
The systematic search for z≳5 active galactic nuclei in the Chandra Deep Field South
We investigate early black hole (BH) growth through the methodical search for z≳5 active galactic nuclei (AGN) in the Chandra Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1×10−18 (soft, 0.5-2 keV) and 5.5×10−17 erg s−1 cm−2 (hard, 2-8 keV). At z∼5, this corresponds to luminosities as low as ∼1042 (∼1043) erg s−1 in the soft (hard) band and should allow us to detect Compton-thin AGN with MBH>107 M⊙ and Eddington ratios >0.1. Our field (0.03 deg2) contains over 600z∼5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ∼20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z≳5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z≳5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenario
Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility
Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, theta, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between theta ~ 340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes
A Retrospective Survey of HIV Drug Resistance Among Patients 1 Year After Initiation of Antiretroviral Therapy at 4 Clinics in Malawi
In 2004, Malawi began scaling up its national antiretroviral therapy (ART) program. Because of limited treatment options, population-level surveillance of acquired human immunodeficiency virus drug resistance (HIVDR) is critical to ensuring long-term treatment success. The World Health Organization target for clinic-level HIVDR prevention at 12 months after ART initiation is ≥ 70%. In 2007, viral load and HIVDR genotyping was performed in a retrospective cohort of 596 patients at 4 ART clinics. Overall, HIVDR prevention (using viral load ≤ 400 copies/mL) was 72% (95% confidence interval [CI], 67%-77%; range by site, 60%-83%) and detected HIVDR was 3.4% (95% CI, 1.8%-5.8%; range by site, 2.5%-4.7%). Results demonstrate virological suppression and HIVDR consistent with previous reports from sub-Saharan Africa. High rates of attrition because of loss to follow-up were noted and merit attention
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions
Path Integral Monte Carlo simulations have been performed for U(1) lattice
gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static
quark potential, the string tension and the low-lying "glueball" spectrum.The
Euclidean string tension and mass gap decrease exponentially at weakcoupling in
excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack,
but their magnitudes are five times bigger than predicted. Extrapolations are
made to the extreme anisotropic or Hamiltonian limit, and comparisons are made
with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure
On the mean-field spherical model
Exact solutions are obtained for the mean-field spherical model, with or
without an external magnetic field, for any finite or infinite number N of
degrees of freedom, both in the microcanonical and in the canonical ensemble.
The canonical result allows for an exact discussion of the loci of the Fisher
zeros of the canonical partition function. The microcanonical entropy is found
to be nonanalytic for arbitrary finite N. The mean-field spherical model of
finite size N is shown to be equivalent to a mixed isovector/isotensor
sigma-model on a lattice of two sites. Partial equivalence of statistical
ensembles is observed for the mean-field spherical model in the thermodynamic
limit. A discussion of the topology of certain state space submanifolds yields
insights into the relation of these topological quantities to the thermodynamic
behavior of the system in the presence of ensemble nonequivalence.Comment: 21 pages, 5 figure
- …
