8 research outputs found

    An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State

    Get PDF
    The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2 Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials

    Weak localization effect on thermomagnetic phenomena

    Full text link
    The quantum transport equation (QTE) is extended to study weak localization (WL) effects on galvanomagnetic and thermomagnetic phenomena. QTE has many advantages over the linear response method (LRM): (i) particle-hole asymmetry which is necessary for the Hall effect is taken into account by the nonequilibrium distribution function, while LRM requires expansion near the Fermi surface, (ii) when calculating response to the temperature gradient, the problem of WL correction to the heat current operator is avoided, (iii) magnetic field is directly introduced to QTE, while the LRM deals with the vector potential and and special attention should be paid to maintain gauge invariance, e.g. when calculating the Nernst effect the heat current operator should be modified to include the external magnetic field. We reproduce in a very compact form known results for the conductivity, the Hall and the thermoelectric effects and then we study our main problem, WL correction to the Nernst coefficient (transverse thermopower).Comment: 20 pages 2 figure

    An adaptive mutation in enterococcus faecium LiaR associated with antimicrobial peptide resistance mimics phosphorylation and stabilizes LiaR in an activated state

    No full text
    The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2 Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials

    A variable DNA recognition site organization establishes the LiaR-mediated cell envelope stress response of enterococci to daptomycin

    No full text
    LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structural basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaRD191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. Crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons
    corecore