50 research outputs found

    Guidelines for Using the Q Test in Meta-Analysis

    Get PDF
    The Q test is regularly used in meta-analysis to examine variation in effect sizes. However, the assumptions of Q are unlikely to be satisfied in practice prompting methodological researchers to conduct computer simulation studies examining its statistical properties. Narrative summaries of this literature are available but a quantitative synthesis of study findings for using the Q test has not appeared. We quantitatively synthesized estimated Type I error rates and power values of a sample of computer simulation studies of the Q test. The results suggest that Q should not be used for standardized mean difference effect sizes like Hedges’ g unless the number of studies and primary study sample sizes are at least 40. Use of the Fisher’s r-to-z transformed effect size, on the other hand, resulted in Q performing well in almost all conditions studied. We summarize our findings in a table that provides guidelines for using this important test

    Increasing Employee Awareness of the Signs and Symptoms of Heart Attack and the Need to Use 911 in a State Health Department

    Get PDF
    INTRODUCTION: Early recognition of the signs and symptoms of a heart attack can lead to reduced morbidity and mortality. METHODS: A workplace intervention was conducted among 523 Montana state health department employees in 2003 to increase awareness of the signs and symptoms of heart attack and the need to use 911. All employees received an Act in Time to Heart Attack Signs brochure and wallet card with their paychecks. Act in Time posters were placed in key workplace areas. A weekly e-mail message, including a contest entry opportunity addressing the signs and symptoms of heart attack, was sent to all employees. Baseline and follow-up telephone surveys were conducted to evaluate intervention effectiveness. RESULTS: Awareness of heart attack signs and symptoms and the need to call 911 increased significantly among employees from baseline to follow-up: pain or discomfort in the jaw, neck, or back (awareness increased from 69% to 91%); feeling weak, light-headed, or faint (awareness increased from 79% to 89%); call 911 if someone is having a heart attack or stroke (awareness increased from 84% to 90%). Awareness of chest pain, pain or discomfort in the arms or shoulders, and shortness of breath were more than 90% at baseline and did not increase significantly at follow-up. At baseline, 69% of respondents correctly reported five or more of the signs and symptoms of heart attack; 89% reported correctly at follow-up. CONCLUSION: This low-cost workplace intervention increased awareness of the signs and symptoms of heart attack and the need to call 911

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3(where X=Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5–380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150−170K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature. © 2018 American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1103/PhysRevMaterials.2.06540

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3 (where X=Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5–380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150−170K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    This paper was supported by Engineering and Physical Sciences Research Council (EPSRC) Grants No. EP/K503162/1, No. EP/M506631/1, No. EP/M025330/1, No. EP/L017008/1, No. EP/K022237/1, No. EP/K015540/1, and No. EP/I036079/1. RUS facilities in Cambridge were established through grants to M.A.C. from the EPSRC and the Natural Environment Research Council (Grants No. NE/B505738/1 and No. NE/F17081/1). A portion of this research used resources at the Spallation Neutron Source, a U.S. Department of Energy Office of Science User Facility operated by the Oak Ridge National Laboratory (ORNL). I.D.W.S. acknowledges funding from a Royal Society Wolfson research merit award.The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3 (where X = Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5-380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150-170 K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature.PostprintPeer reviewe

    Cardiometabolic Risk Factor Changes Observed in Diabetes Prevention Programs in US Settings: A Systematic Review and Meta-analysis

    Get PDF
    Background: The Diabetes Prevention Program (DPP) study showed that weight loss in high-risk adults lowered diabetes incidence and cardiovascular disease risk. No prior analyses have aggregated weight and cardiometabolic risk factor changes observed in studies implementing DPP interventions in nonresearch settings in the United States. Methods and Findings: In this systematic review and meta-analysis, we pooled data from studies in the United States implementing DPP lifestyle modification programs (focused on modest [5%–7%] weight loss through ≥150 min of moderate physical activity per week and restriction of fat intake) in clinical, community, and online settings. We reported aggregated pre- and post-intervention weight and cardiometabolic risk factor changes (fasting blood glucose [FBG], glycosylated hemoglobin [HbA1c], systolic or diastolic blood pressure [SBP/DBP], total [TC] or HDL-cholesterol). We searched the MEDLINE, EMBASE, Cochrane Library, and Clinicaltrials.gov databases from January 1, 2003, to May 1, 2016. Two reviewers independently evaluated article eligibility and extracted data on study designs, populations enrolled, intervention program characteristics (duration, number of core and maintenance sessions), and outcomes. We used a random effects model to calculate summary estimates for each outcome and associated 95% confidence intervals (CI). To examine sources of heterogeneity, results were stratified according to the presence of maintenance sessions, risk level of participants (prediabetes or other), and intervention delivery personnel (lay or professional). Forty-four studies that enrolled 8,995 participants met eligibility criteria. Participants had an average age of 50.8 years and body mass index (BMI) of 34.8 kg/m2, and 25.2% were male. On average, study follow-up was 9.3 mo (median 12.0) with a range of 1.5 to 36 months; programs offered a mean of 12.6 sessions, with mean participant attendance of 11.0 core sessions. Sixty percent of programs offered some form of post-core maintenance (either email or in person). Mean absolute changes observed were: weight -3.77 kg (95% CI: -4.55; -2.99), HbA1c -0.21% (-0.29; -0.13), FBG -2.40 mg/dL (-3.59; -1.21), SBP -4.29 mmHg (-5.73, -2.84), DBP -2.56 mmHg (-3.40, 1.71), HDL +0.85 mg/dL (-0.10, 1.60), and TC -5.34 mg/dL (-9.72, -0.97). Programs with a maintenance component achieved greater reductions in weight (additional -1.66kg) and FBG (additional -3.14 mg/dl). Findings are subject to incomplete reporting and heterogeneity of studies included, and confounding because most included studies used pre-post study designs. Conclusions: DPP lifestyle modification programs achieved clinically meaningful weight and cardiometabolic health improvements. Together, these data suggest that additional value is gained from these programs, reinforcing that they are likely very cost-effective

    An empirical study of the effects of small datasets and varying prior variances on item parameter estimation in BILOG

    No full text
    Long-standing difficulties in estimating item parameters in item response theory (IRT) have been addressed recently with the application of Bayesian estimation models. The potential of these methods is enhanced by their availability in the BILOG computer program. This study investigated the ability of BILOG to recover known item parameters under varying conditions. Data were simulated for a two-parameter logistic IRT model under conditions of small numbers of examinees and items, and different variances for the prior distributions of discrimination parameters. The results suggest that for samples of at least 250 examinees and 15 items, BILOG accurately recovers known parameters using the default variance. The quality of the estimation suffers for smaller numbers of examinees under the default variance, and for larger prior variances in general. This raises questions about how practitioners select a prior variance for small numbers of examinees and items. Index terms: BILOG, item parameter estimation, item response theory, parameter recovery, prior distributions, simulation
    corecore