23 research outputs found

    Umfassende Untersuchung von resonanten Tunneldioden aus verdünnt-magnetischen Halbleitern

    No full text
    We investigate transport measurements on all II-VI semiconductor resonant tunneling diodes (RTDs). Being very versatile, the dilute magnetic semiconductor (DMS) system (Zn,Be,Mn,Cd)Se is a perfect testbed for various spintronic device designs, as it allows for separate control of electrical and magnetic properties. In contrast to the ferromagnetic semiconductor (Ga,Mn)As, doping ZnSe with Mn impurities does not alter the electrical properties of the semiconductor, as the magnetic dopant is isoelectric in the ZnSe host.Diese Doktorarbeit befasst sich mit Transportmessungen an resonanten Tunneldioden (engl. resonant tunneling diode, RTD), welche vollst� andig aus II-VI Halbleitermaterial bestehen. Das verd� unnt magnetische (engl. dilute magnetic semiconductor, DMS) Halbleitermaterialsystem (Zn,Be,Mn,Cd)Se ist sehr vielseitig und eignet sich hervorragend als Testsystem f� ur diverse Spintronik Bauelemente, denn magnetische und elektrische Eigenschaften lassen sich getrennt voneinander einstellen. Im Gegensatz zum ferromagnetischen Halbleiter (Ga,Mn)As ver� andert das Dotieren von ZnSe mit Mn nicht die elektrischen Eigenschaften des Halbleiters

    Erfahrung und Referenz. Erzählte Geschichte im 20. Jahrhundert

    No full text

    Delayed hemolysis, elevated liver enzymes, low platelet count syndrome in succession of switches of preventive anticoagulant treatment in a 41-year-old patient with a history of recurrent assisted implantation failures: a case report

    No full text
    Abstract Background For the past decades the mean age of primiparae in Western societies is constantly increasing. At the same time, there is a growing demand for assisted reproductive technologies such as in vitro fertilization and intracytoplasmic sperm injection. Subsequently, a higher prevalence of pregnancy-associated diseases such as gestational hypertension and preeclampsia is observed. To improve pregnancy rates after in vitro fertilization/intracytoplasmic sperm injection and to reduce the risk of pregnancy-associated diseases with a cardiovascular pathophysiology, two anticoagulants are the focus of current research: low molecular weight heparin and acetylsalicylic acid (aspirin). Case presentation A 41-year-old white woman, gravida 3, para 0, received low molecular weight heparin to reduce the risk of abortion after five unsuccessful intracytoplasmic sperm injections and two miscarriages. She autonomously discontinued the medication with low molecular weight heparin at 12 weeks and 2 days of gestation and took aspirin instead until 24 weeks and 2 days of gestation as preeclampsia prophylaxis. However, the pregnancy ended with an urgent cesarean section at 27 weeks and 4 days of gestation due to a fast progressing hemolysis, elevated liver enzyme levels, and low blood platelet count syndrome, a potentially life-threatening variant of preeclampsia. Conclusion Based on the current demographic trend toward late-in-life pregnancy it is mandatory to establish clear guidelines concerning preventive treatment options of preeclampsia for patients with risk factors. The establishment of a special first-trimester screening for these women should be discussed. Moreover, it is necessary to raise the awareness among physicians of these contemporary issues to guarantee the best possible medical care

    Enzymatic and structural characterization of the major endopeptidase in the Venus flytrap digestion fluid

    No full text
    Michael W. Risor et al.Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the prodomain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S and for positively charged residues in S. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.This work was supported in part by grants from European, Danish, Spanish, and Catalan agencies (FP7-PEOPLE-2011-ITN-290246 “RAPID”; FP7-HEALTH-2012-306029-2 “TRIGGER”; BFU2012-32862; MDM-2014-0435; BIO2013-49320-EXP; and 2014SGR9). The Department of Structural Biology of the Institut de Biologia Molecular de Barcelona is a “María de Maeztu” Unit of Excellence of the Spanish Ministry of Economy and CompetitivenessPeer Reviewe

    The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases

    No full text
    © The Author(s) 2019.Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a “CPDCP-trunk” and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the “legumain-binding loop” of CY1 inhibit crayfish astacin following the “raised-elephant-trunk mechanism” recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.This study was supported in part by grants from German, Spanish and Catalan public agencies (DFG FA1518/1-1; DFG JA562/16 and FL1033/1; IZKF Aachen Medical Faculty Research Fund; JGU Research Fund; BFU2015-64487R; MDM-2014-0435; Fundació “La Marató de TV3” 201815 and 2017SGR3)

    Evidence for restricted reactivity of ADAMDEC1 with protein substrates and endogenous inhibitors

    No full text
    ADAMDEC1 is a proteolytically active metzincin metalloprotease displaying rare active site architecture with a zinc-binding Asp residue (Asp-362). We previously demonstrated that substitution of Asp-362 for a His residue, thereby reconstituting the canonical metzincin zinc-binding environment with three His zinc ligands, increases the proteolytic activity. The protease also has an atypically short domain structure with an odd number of Cys residues in the metalloprotease domain. Here, we investigated how these rare structural features in the ADAMDEC1 metalloprotease domain impact the proteolytic activity, the substrate specificity, and the effect of inhibitors. We identified carboxymethylated transferrin (Cm-Tf) as a new ADAMDEC1 substrate and determined the primary and secondary cleavage sites, which suggests a strong preference for Leu in the P1' position. Cys(392), present in humans but only partially conserved within sequenced ADAMDEC1 orthologs, was found to be unpaired, and substitution of Cys(392) for a Ser increased the reactivity with α2-macroglobulin but not with casein or Cm-Tf. Substitution of Asp(362) for His resulted in a general increase in proteolytic activity and a change in substrate specificity was observed with Cm-Tf. ADAMDEC1 was inhibited by the small molecule inhibitor batimastat but not by tissue inhibitor of metalloproteases (TIMP)-1, TIMP-2, or the N-terminal inhibitory domain of TIMP-3 (N-TIMP-3). However, N-TIMP-3 displayed profound inhibitory activity against the D362H variants with a reconstituted consensus metzincin zinc-binding environment. We hypothesize that these unique features of ADAMDEC1 may have evolved to escape from inhibition by endogenous metalloprotease inhibitors

    Porz, an essential component of the type ix secretion system of porphyromonas gingivalis, delivers anionic lipopolysaccharide to the poru sortase for transpeptidase processing of t9ss cargo proteins

    Get PDF
    Bacteria have evolved multiple systems to transport effector proteins to their surface or into the surrounding milieu. These proteins have a wide range of functions, including attachment, motility, nutrient acquisition, and toxicity in the host. Porphyromonas gingivali

    Facile chemical synthesis and equilibrium unfolding properties of CopG

    No full text
    The 45-amino acid polypeptide chain of the homodimeric transcriptional repressor, CopG, was chemically synthesized by stepwise solid phase peptide synthesis (SPPS) using a protocol based on Boc-chemistry. The product obtained from the synthesis was readily purified by reversed-phase HPLC to give a good overall yield (21% by weight). Moreover, the synthetic CopG constructs prepared in this work folded into three-dimensional structures similar to the wild-type protein prepared using conventional recombinant methods as judged by far UV-CD spectroscopy. A fluorescent CopG analog, (Y39W)CopG, was also designed and chemically synthesized to facilitate biophysical studies of CopG’s protein folding and assembly reaction. The guanidinium chloride-induced equilibrium unfolding properties of the wild-type CopG and (Y39W)CopG constructs in this work were characterized and used to develop a model for CopG’s equilibrium unfolding reaction. Our results indicate that CopG’s folding and assembly reaction is well modeled by a two-state process involving folded dimer and unfolded monomer. Using this model, ΔGf and m-values of −13.42 ± 0.04 kcal/mole dimer and 1.92 ± 0.01 kcal/(mole M) were calculated for CopG
    corecore