385 research outputs found

    Atmospheric mercury and fine particulate matter in coastal New England : implications for mercury and trace element sources in the northeastern United States

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Atmospheric Environment 79 (2013): 760–768, doi:10.1016/j.atmosenv.2013.07.031.Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.We acknowledge support of the USGS Toxic Substances Hydrology Program, the USGS Energy Resources Program, the National Science Foundation Small Grants for Exploratory Research Program, and for initial support, the USGS Mendenhall Postdoctoral Program

    Predicting Risk of End-Stage Liver Disease in Antiretroviral-Treated HIV/Hepatitis C Virus-Coinfected Patients

    Get PDF
    Background. End-stage liver disease (ESLD) is an important cause of morbidity among HIV/hepatitis C virus (HCV)-coinfected patients. Quantifying the risk of this outcome over time could help determine which coinfected patients should be targeted for risk factor modification and HCV treatment. We evaluated demographic, clinical, and laboratory variables to predict risk of ESLD in HIV/HCV-coinfected patients receiving antiretroviral therapy (ART). Methods. We conducted a retrospective cohort study among 6,016 HIV/HCV-coinfected patients who received ART within the Veterans Health Administration between 1997 and 2010. The main outcome was incident ESLD, defined by hepatic decompensation, hepatocellular carcinoma, or liver-related death. Cox regression was used to develop prognostic models based on baseline demographic, clinical, and laboratory variables, including FIB-4 and aspartate aminotransferase-to-platelet ratio index, previously validated markers of hepatic fibrosis. Model performance was assessed by discrimination and decision curve analysis. Results. Among 6,016 HIV/HCV patients, 532 (8.8%) developed ESLD over a median of 6.6 years. A model comprising FIB-4 and race had modest discrimination for ESLD (c-statistic, 0.73) and higher net benefit than alternative strategies of treating no or all coinfected patients at relevant risk thresholds. For FIB-4 \u3e3.25, ESLD risk ranged from 7.9% at 1 year to 26.0% at 5 years among non-blacks and from 2.4% at 1 year to 14.0% at 5 years among blacks. Conclusions. Race and FIB-4 provided important predictive information on ESLD risk among HIV/HCV patients. Estimating risk of ESLD using these variables could help direct HCV treatment decisions among HIV/HCV-coinfected patients

    Evolution dynamics of a dense frozen Rydberg gas to plasma

    Get PDF
    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm−1. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction re- gion, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 μs caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms

    Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway

    Get PDF
    Preparation of well-ordered continuous mesoporous carbon films without the use of an intermediate inorganic template was achieved by spin coating of a thermosetting phenolic resin, resorcinol/phloroglucinol/formaldehyde, and a thermally-decomposable organic template, Pluronic F127 (PEO106–PPO70–PEO106). The carbon films were deposited onto silicon, platinum/silicon, copper, glass, and quartz substrates. Afterwards, decomposition of the organic template and solidification of the carbon precursors are simultaneously performed through a carbonization process. The resulting films referred to as CKU-F69, are (010)-oriented, and possess a face-centered orthorhombic Fmmm symmetry. Film periodicity is maintained even after a 68% uniaxial contraction perpendicular to the substrate brought on by carbonization at 800 °C. This method could facilitate the mass-production and creation of new carbon and carbon–polymer porous films that find broad potential applications in catalysis, separation, hydrogen storage, bioengineering, nanodevices, and nanotemplates

    Evolution dynamics of a dense frozen Rydberg gas to plasma

    Get PDF
    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm−1. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction re- gion, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 μs caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms

    Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Get PDF
    BACKGROUND: In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. RESULTS: The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC). CONCLUSION: pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm

    Cancer incidence in HIV-infected versus uninfected veterans: Comparison of cancer registry and ICD-9 code diagnoses

    Get PDF
    Background: Given the growing interest in the cancer burden in persons living with HIV/AIDS, we examined the validity of data sources for cancer diagnoses (cancer registry versus International Classification of Diseases, Ninth Revision [ICD-9 codes]) and compared the association between HIV status and cancer risk using each data source in the Veterans Aging Cohort Study (VACS), a prospective cohort of HIV-infected and uninfected veterans from 1996 to 2008. Methods: We reviewed charts to confirm potential incident cancers at four VACS sites. In the entire cohort, we calculated cancer-type-specific age-, sex-, race/ethnicity-, and calendar-period-standardized incidence rates and incidence rate ratios (IRR) (HIV-infected versus uninfected). We calculated standardized incidence ratios (SIR) to compare VACS and Surveillance, Epidemiology, and End Results rates. Results: Compared to chart review, both Veterans Affairs Central Cancer Registry (VACCR) and ICD-9 diagnoses had approximately 90% sensitivity; however, VACCR had higher positive predictive value (96% versus 63%). There were 6,010 VACCR and 13,386 ICD-9 incident cancers among 116,072 veterans. Although ICD-9 rates tended to be double VACCR rates, most IRRs were in the same direction and of similar magnitude, regardless of data source. Using source, all cancers combined, most viral-infection-related cancers, lung cancer, melanoma, and leukemia had significantly elevated IRRs. Using ICD-9, eight additional IRRs were significantly elevated, most likely due to false positive diagnoses. Most ICD-9 SIRs were significantly elevated and all were higher than the corresponding VACCR SIR. Conclusions: ICD-9 may be used with caution for estimating IRRs, but should be avoided when estimating incidence or SIRs. Elevated cancer risk based on VACCR diagnoses among HIV-infected veterans was consistent with other studies

    Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors

    Get PDF
    Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2\u27-O-Methyl (2\u27OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2\u27OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2\u27OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application
    corecore