212 research outputs found
A comparison of success rates of introduced passeriform birds in New Zealand, Australia and the United States
In this study, we compiled lists of successful and unsuccessful passeriform introductions to nine sites in New Zealand, Australia and the United States. We limited our analysis to introductions during the 19th century to minimize potential variation in transport modes and habitat quality changes, such as those due to increasing urbanization. We compared introduction success rates at three levels. First we included all passeriforms introduced to any of the sites in the three locations, then we compared the fates of just those species with a European origin and finally we compared success rates of just the 13 species released into all three locations. We found that the pattern of success or failure differed significantly across the three locations: Passeriforms introduced by acclimatization organizations to the United States were significantly more likely to fail than those introduced to New Zealand or Australia. Several species that succeeded in either New Zealand or Australia failed in the United States, even after the introduction of seemingly sufficient numbers
The Importance of Scaling for Detecting Community Patterns: Success and Failure in Assemblages of Introduced Species
Community saturation can help to explain why biological invasions fail. However, previous research has documented inconsistent relationships between failed invasions (i.e., an invasive species colonizes but goes extinct) and the number of species present in the invaded community. We use data from bird communities of the Hawaiian island of Oahu, which supports a community of 38 successfully established introduced birds and where 37 species were introduced but went extinct (failed invasions). We develop a modified approach to evaluate the effects of community saturation on invasion failure. Our method accounts (1) for the number of species present (NSP) when the species goes extinct rather than during its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the hierarchical organization of ecosystems and the fact that interaction strength amongst species varies with scale. We found that when using NSP at the time of extinction, NSP was higher for failed introductions as compared to successful introductions, supporting the idea that increasing species richness and putative community saturation mediate invasion resistance. Accounting for scale-specific patterns in body size distributions further improved the relationship between NSP and introduction failure. Results show that a better understanding of invasion outcomes can be obtained when scale-specific community structure is accounted for in the analysis
The Importance of Scaling for Detecting Community Patterns: Success and Failure in Assemblages of Introduced Species
Community saturation can help to explain why biological invasions fail. However, previous research has documented inconsistent relationships between failed invasions (i.e., an invasive species colonizes but goes extinct) and the number of species present in the invaded community. We use data from bird communities of the Hawaiian island of Oahu, which supports a community of 38 successfully established introduced birds and where 37 species were introduced but went extinct (failed invasions). We develop a modified approach to evaluate the effects of community saturation on invasion failure. Our method accounts (1) for the number of species present (NSP) when the species goes extinct rather than during its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the hierarchical organization of ecosystems and the fact that interaction strength amongst species varies with scale. We found that when using NSP at the time of extinction, NSP was higher for failed introductions as compared to successful introductions, supporting the idea that increasing species richness and putative community saturation mediate invasion resistance. Accounting for scale-specific patterns in body size distributions further improved the relationship between NSP and introduction failure. Results show that a better understanding of invasion outcomes can be obtained when scale-specific community structure is accounted for in the analysis
Sex differences in the cerebral BOLD signal response to painful heat stimuli
There are limited data addressing the question of sex differences in pain-related cerebral processing. This study examined whether pain-related blood oxygenation level-dependent (BOLD) signal change measured with functional magnetic resonance imaging (fMRI) demonstrated sex differences, under conditions of equivalent pain perception. Twenty-eight healthy volunteers (17 women, 11 men) were subject to a fMRI scan while noxious heat stimuli were applied to the dorsum of the left foot. Significant BOLD signal modulation was observed in several nociceptive processing regions of interest (ROIs) in all subjects. There were no sex differences in the spatial extent of BOLD signal change for any ROI, but the signal amplitude was lower for women in most ROIs and significantly so for the primary somatosensory cortex (S1), the midanterior cingulate cortex, and the dorsolateral prefrontal cortex (DLPFC). The BOLD signal response could be positive or negative, and frequently, both polarities were observed within a single ROI. In most ROIs, women show proportionately more voxels with negative signal change than men, and this difference was statistically significant for the S1 and the DLPFC. The time course of the negative signal change was very similar to that of the positive signal change, suggesting that the latter was not “driving” the former. The location of negative and positive clusters formed distinct patterns in several of the ROIs, and these patterns suggest something other than a local “steal” phenomenon as an explanation for the negative signal changes. Sex differences in baseline cerebral blood flow may contribute to the BOLD signal differences observed in this study
A Survey of Methods for Data Inclusion in System Dynamics Models
In 1980, Jay Forrester enumerated three types of data needed to develop the structure and decision rules in models: numerical, written and mental data, in increasing order of importance. While this prioritization is appropriate, it is numerical data that has experienced the most development in the 25 years since Forester made his enumeration. In this paper, we’ll focus on how numerical data can be incorporated into models when written and mental data are known, and survey the techniques for doing so
Liquefied petroleum gas or biomass for cooking and effects on birth weight
BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear.
METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks’ gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 μm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy.
RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 μg per cubic meter in the intervention group and 70.7 μg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, −10.1 to 49.2).
CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682. opens in new tab.
Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)?
This paper addresses the question of whether one can economically improve the robustness of a molecular phylogeny estimate by increasing gene sampling in only a subset of taxa, without having the analysis invalidated by artifacts arising from large blocks of missing data. Our case study stems from an ongoing effort to resolve poorly understood deeper relationships in the large clade Ditrysia ( > 150,000 species) of the insect order Lepidoptera (butterflies and moths). Seeking to remedy the overall weak support for deeper divergences in an initial study based on five nuclear genes (6.6 kb) in 123 exemplars, we nearly tripled the total gene sample (to 26 genes, 18.4 kb) but only in a third (41) of the taxa. The resulting partially augmented data matrix (45% intentionally missing data) consistently increased bootstrap support for groupings previously identified in the five-gene (nearly) complete matrix, while introducing no contradictory groupings of the kind that missing data have been predicted to produce. Our results add to growing evidence that data sets differing substantially in gene and taxon sampling can often be safely and profitably combined. The strongest overall support for nodes above the family level came from including all nucleotide changes, while partitioning sites into sets undergoing mostly nonsynonymous versus mostly synonymous change. In contrast, support for the deepest node for which any persuasive molecular evidence has yet emerged (78–85% bootstrap) was weak or nonexistent unless synonymous change was entirely excluded, a result plausibly attributed to compositional heterogeneity. This node (Gelechioidea + Apoditrysia), tentatively proposed by previous authors on the basis of four morphological synapomorphies, is the first major subset of ditrysian superfamilies to receive strong statistical support in any phylogenetic study. A “more-genes-only” data set (41 taxa×26 genes) also gave strong signal for a second deep grouping (Macrolepidoptera) that was obscured, but not strongly contradicted, in more taxon-rich analyses
In Search of a Trade Mark: Search Practices and Bureaucratic Poetics
Trade marks have been understood as quintessential ‘bureaucratic properties’. This article suggests that the making of trade marks has been historically influenced by bureaucratic practices of search and classification, which in turn were affected by the possibilities and limits of spatial organisation and technological means of access and storage. It shows how the organisation of access and retrieval did not only condition the possibility of conceiving new trade marks, but also served to delineate their intangible proprietary boundaries. Thereby they framed the very meaning of a trade mark. By advancing a historical analysis that is sensitive to shifts, both in actual materiality and in the administrative routines of trade mark law, the article highlights the legal form of trade mark as inherently social and materially shaped. We propose a historical understanding of trade mark law that regards legal practice and bureaucratic routines as being co-constitutive of the very legal object itself
A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms
Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats
ABSTRACT The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug-metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/ pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain
- …