282 research outputs found

    Relationships between school taxes and town taxes in Vermont local government

    Get PDF
    Occasional paper (University of Vermont. Center for Research on Vermont) ; no. 8

    Applying item-response theory to the development of a screening adaptation of the Goldman-Fristoe Test of Articulation-2

    Get PDF
    PURPOSE: Item Response Theory (IRT) is a psychometric approach to measurement that uses latent trait abilities (e.g., speech sound production skills) to model performance on individual items that vary by difficulty and discrimination. An IRT analysis was applied to preschooler’s productions of the words on the Goldman-Fristoe Test of Articulation-2 (GFTA-2) to identify candidates for a screening measure of speech sound production skills. METHOD: The phoneme accuracies from 154 preschoolers, with speech skills on the GFTA-2 ranging from the 1st to above the 90th percentile, were analyzed with a two-parameter logistic model. RESULTS: A total of 108 of the 232 phonemes from stimuli in the sounds-in-words subtest fit the IRT model. These phonemes, and subgroups of the most difficult of these phonemes, correlated significantly with the children’s overall percentile scores on the GFTA-2. Regression equations calculated for the five and ten most difficult phonemes predicted overall percentile score at levels commensurate with other screening measures. CONCLUSIONS: These results suggest that speech production accuracy can be screened effectively with a small number of sounds. They motivate further research towards the development of a screening measure of children’s speech sound production skills whose stimuli consist of a limited number of difficult phonemes

    Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase

    Get PDF
    The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM ICin vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K

    Explorations, Vol. 6, No. 2

    Get PDF
    Cover: Untitled #13, Series 2, chalk on paper, by Ronald Ghiz, Associate Professor of Art at the University of Maine. Articles include: Editorial Overview: in this issue, by Carole J. Bombard Save the Planet . . . please, by Nick Houtman Research and Public Service Recognizing Leadership, Pioneering, and Productivity, Herb Hidu and Stephen Norton Private Assistance for Maine’s Hungry, by William H. Whitaker and Jean M. Andrews The Ugly Faces of Hunger Explaining the Iranian Revolution, by Henry Munson, Jr. Biological Clocks: timing is everything—and everywhere, by Jamie Watler Love of Glory and the Common Good: Periclean Democracy and Athenian Tyranny in Thucydides, by Michael Palmer Tools of the Trade: Technology Usage and Financial Performance in Small Business, by Diane J. Garsombke and Thomas W. Garsombk

    Near-infrared spectroscopy detects age-related differences in skeletal muscle oxidative function: promising implications for geroscience

    Get PDF
    Age is the greatest risk factor for chronic disease and is associated with a marked decline in functional capacity and quality of life. A key factor contributing to loss of function in older adults is the decline in skeletal muscle function. While the exact mechanism(s) remains incompletely understood, age-related mitochondrial dysfunction is thought to play a major role. To explore this question further, we studied 15 independently living seniors (age: 72 ± 5 years; m/f: 4/11; BMI: 27.6 ± 5.9) and 17 young volunteers (age: 25 ± 4 years; m/f: 8/9; BMI: 24.0 ± 3.3). Skeletal muscle oxidative function was measured in forearm muscle from the recovery kinetics of muscle oxygen consumption using near-infrared spectroscopy (NIRS). Muscle oxygen consumption was calculated as the slope of change in hemoglobin saturation during a series of rapid, supra-systolic arterial cuff occlusions following a brief bout of exercise. Aging was associated with a significant prolongation of the time constant of oxidative recovery following exercise (51.8 ± 5.4 sec vs. 37.1 ± 2.1 sec, P = 0.04, old vs. young, respectively). This finding suggests an overall reduction in mitochondrial function with age in nonlocomotor skeletal muscle. That these data were obtained using NIRS holds great promise in gerontology for quantitative assessment of skeletal muscle oxidative function at the bed side or clinic

    Disturbance Agents and Their Associated Effects on the Health of Interior Douglas-Fir Forests in the Central Rocky Mountains

    Get PDF
    Interior Douglas-fir is a prevalent forest type throughout the central Rocky Mountains. Past management actions, specifically fire suppression, have led to an expansion of this forest type. Although Douglas-fir forests cover a broad geographic range, few studies have described the interactive effects of various disturbance agents on forest health conditions. In this paper, we review pertinent literature describing the roles, linkages, and mechanisms by which disturbances, including insect outbreaks, pathogens, fire, and other abiotic factors, affect the development, structure, and distribution of interior montane forests primarily comprised of Douglas-fir. We also discuss how these effects may influence important resource values such as water, biodiversity, wildlife habitat, timber, and recreation. Finally, we identify gaps where further research may increase our understanding of these disturbance agents, their interacting roles, and how they influence long-term forest health

    Impact of animal strain on gene expression in a rat model of acute cardiac rejection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expression levels of many genes show wide natural variation among strains or populations. This study investigated the potential for animal strain-related genotypic differences to confound gene expression profiles in acute cellular rejection (ACR). Using a rat heart transplant model and 2 different rat strains (Dark Agouti, and Brown Norway), microarrays were performed on native hearts, transplanted hearts, and peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>In heart tissue, strain alone affected the expression of only 33 probesets while rejection affected the expression of 1368 probesets (FDR 10% and FC ≥ 3). Only 13 genes were affected by both strain and rejection, which was < 1% (13/1368) of all probesets differentially expressed in ACR. However, for PBMC, strain alone affected 265 probesets (FDR 10% and FC ≥ 3) and the addition of ACR had little further effect. Pathway analysis of these differentially expressed strain effect genes connected them with immune response, cell motility and cell death, functional themes that overlap with those related to ACR. After accounting for animal strain, additional analysis identified 30 PBMC candidate genes potentially associated with ACR.</p> <p>Conclusion</p> <p>In ACR, genetic background has a large impact on the transcriptome of immune cells, but not heart tissue. Gene expression studies of ACR should avoid study designs that require cross strain comparisons between leukocytes.</p

    A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery

    Get PDF
    RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticles (LNPs), are impeded by limited screening methods to probe the intracellular processing of LNPs in sufficient detail. We have developed a high-throughput imaging-based endosomal escape assay utilising a Galectin-9 reporter and fluorescently labelled mRNA to probe correlations between nanoparticle-mediated uptake, endosomal escape frequency, and mRNA translation. Furthermore, this assay has been integrated within a screening platform for optimisation of lipid nanoparticle formulations. We show that Galectin-9 recruitment is a robust, quantitative reporter of endosomal escape events induced by different mRNA delivery nanoparticles and small molecules. We identify nanoparticles with superior escape properties and demonstrate cell line variances in endosomal escape response, highlighting the need for fine-tuning of delivery formulations for specific applications

    A unique population of effector memory lymphocytes identified by CD146 having a distinct immunophenotypic and genomic profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD146 is a well described homotypic adhesion molecule found on endothelial cells and a limited number of other cell types. In cells from the peripheral circulation, CD146 has also been reported to be on activated lymphocytes <it>in vitro </it>and <it>in vivo</it>. The function associated with CD146 expression on lymphoid cells is unknown and very little information is available concerning the nature of CD146+ lymphocytes. In the current study, lymphocytes from healthy donors were characterized based upon the presence or absence of CD146 expression.</p> <p>Results</p> <p>CD146 was expressed on a low percentage of circulating T lymphocytes, B lymphocytes, and NK cells in healthy individuals. CD146 expression can be induced and upregulated <it>in vitro </it>on both B cells and T cells, but does not correlate with the expression of other markers of T cell activation. CD146 positive T cells do not represent clonal expansions as determined with the use of anti Vβ reagents. Data suggest that CD146 positive cells have enhanced adherence to endothelial monolayers in vitro. Gene profiling and immunophenotyping studies between CD146+ and CD146- T cells revealed several striking genotypic distinctions such as the upregulation of IL-8 and phenotypic differences including the paucity of CCR7 and CD45RA among CD146 positive T cells, consistent with effector memory function. A number of genes involved in cell adhesion, signal transduction, and cell communication are dramatically upregulated in CD146+ T cells compared to CD146- T cells.</p> <p>Conclusion</p> <p>CD146 appears to identify small, unique populations of T as well as B lymphocytes in the circulation. The T cells have immunophenotypic characteristics of effector memory lymphocytes. The characteristics of these CD146+ lymphocytes in the circulation, together with the known functions in cell adhesion of CD146 on endothelial cells, suggests that these lymphocytes may represent a small subpopulation of cells primed to adhere to the endothelium and possibly extravasate to sites of inflammation.</p

    GSK3-mediated raptor phosphorylation supports amino acid-dependent Q2 mTORC1-directed signalling

    Get PDF
    The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation
    • …
    corecore