57 research outputs found

    Non-Uniqueness of Quantized Yang-Mills Theories

    Get PDF
    We consider quantized Yang-Mills theories in the framework of causal perturbation theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed by a simple commutator relation for the S-matrix. The most general coupling which is gauge invariant in first order contains a two-parametric ambiguity in the ghost sector - a divergence- and a coboundary-coupling may be added. We prove (not completely) that the higher orders with these two additional couplings are gauge invariant, too. Moreover we show that the ambiguities of the n-point distributions restricted to the physical subspace are only a sum of divergences (in the sense of vector analysis). It turns out that the theory without divergence- and coboundary-coupling is the most simple one in a quite technical sense. The proofs for the n-point distributions containing coboundary-couplings are given up to third or fourth order only, whereas the statements about the divergence-coupling are proven in all orders.Comment: 22 pages. The paper is written in TEX. The necessary macros are include

    Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    Get PDF
    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid–spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time.We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to singlecell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellularactin ring assembled along the toroid’s inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer

    Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input

    Get PDF
    Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has been an important experimental model for understanding thalamic circuit development. The developmental remodeling of retinal projections has been the primary focus, however much less is known about the maturation of their synaptic targets, the relay cells of the dLGN. Here we examined the growth and maturation of relay cells during the first few weeks of life and addressed whether early retinal innervation affects their development. To accomplish this we utilized themath5 null (math5−/−) mouse, a mutant lacking retinal ganglion cells and central projections. Results The absence of retinogeniculate axon innervation led to an overall shrinkage of dLGN and disrupted the pattern of dendritic growth among developing relay cells. 3-D reconstructions of biocytin filled neurons frommath5−/− mice showed that in the absence of retinal input relay cells undergo a period of exuberant dendritic growth and branching, followed by branch elimination and an overall attenuation in dendritic field size. However, math5−/− relay cells retained a sufficient degree of complexity and class specificity, as well as their basic membrane properties and spike firing characteristics. Conclusions Retinal innervation plays an important trophic role in dLGN development. Additional support perhaps arising from non-retinal innervation and signaling is likely to contribute to the stabilization of their dendritic form and function

    Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    Full text link
    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin- driven length fluctuations of supra-cellular {\alpha}-actin structures (myonemes) in the outer cell-layer.Comment: 19 pages and 8 figures, submitted to New Journal of Physic

    Massive Vector Mesons and Gauge Theory

    Get PDF
    We show that the requirements of renormalizability and physical consistency imposed on perturbative interactions of massive vector mesons fix the theory essentially uniquely. In particular physical consistency demands the presence of at least one additional physical degree of freedom which was not part of the originally required physical particle content. In its simplest realization (probably the only one) these are scalar fields as envisaged by Higgs but in the present formulation without the ``symmetry-breaking Higgs condensate''. The final result agrees precisely with the usual quantization of a classical gauge theory by means of the Higgs mechanism. Our method proves an old conjecture of Cornwall, Levin and Tiktopoulos stating that the renormalization and consistency requirements of spin=1 particles lead to the gauge theory structure (i.e. a kind of inverse of 't Hooft's famous renormalizability proof in quantized gauge theories) which was based on the on-shell unitarity of the SS-matrix. We also speculate on a possible future ghostfree formulation which avoids ''field coordinates'' altogether and is expected to reconcile the on-shell S-matrix point of view with the off-shell field theory structure.Comment: 53 pages, version to appear in J. Phys.

    Frequency of KCNC3 DNA Variants as Causes of Spinocerebellar Ataxia 13 (SCA13)

    Get PDF
    Gain-of function or dominant-negative mutations in the voltage-gated potassium channel KCNC3 (Kv3.3) were recently identified as a cause of autosomal dominant spinocerebellar ataxia. Our objective was to describe the frequency of mutations associated with KCNC3 in a large cohort of index patients with sporadic or familial ataxia presenting to three US ataxia clinics at academic medical centers.DNA sequence analysis of the coding region of the KCNC3 gene was performed in 327 index cases with ataxia. Analysis of channel function was performed by expression of DNA variants in Xenopus oocytes.Sequence analysis revealed two non-synonymous substitutions in exon 2 and five intronic changes, which were not predicted to alter splicing. We identified another pedigree with the p.Arg423His mutation in the highly conserved S4 domain of this channel. This family had an early-onset of disease and associated seizures in one individual. The second coding change, p.Gly263Asp, subtly altered biophysical properties of the channel, but was unlikely to be disease-associated as it occurred in an individual with an expansion of the CAG repeat in the CACNA1A calcium channel.Mutations in KCNC3 are a rare cause of spinocerebellar ataxia with a frequency of less than 1%. The p.Arg423His mutation is recurrent in different populations and associated with early onset. In contrast to previous p.Arg423His mutation carriers, we now observed seizures and mild mental retardation in one individual. This study confirms the wide phenotypic spectrum in SCA13

    Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association Meta-Analysis

    Get PDF
    Introduction: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a meta-analysis of genome-wide association scans (GWAS) from 3 cohorts to identify the contribution of common variants to ischemic stroke risk.Methods: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610 or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was performed with the 1000 Genomes European ancestry haplotypes (August 2010 release) as a reference. A total of 5,156,597 single-nucleotide polymorphisms (SNPs) were incorporated into the fixed effects meta-analysis. All SNPs associated with ischemic stroke (P < 1 x 10(-5)) were incorporated into a multivariate risk profile model.Results: No SNP reached genome-wide significance for ischemic stroke (P < 5 x 10(-8)). Secondary analysis identified a significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs associated with late onset, beta = 14.77 [10.85, 18.68], P = 5.5 x 10(-12)), as well as a strong effect showing increased risk across samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P < 5 x 10(-6)). Risk profile scores based only on genomic information offered little incremental prediction.Discussion: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant) information may be required to improve clinical risk profiling

    Perinatal Asphyxia Affects Rat Auditory Processing: Implications for Auditory Perceptual Impairments in Neurodevelopmental Disorders

    Get PDF
    Perinatal asphyxia, a naturally and commonly occurring risk factor in birthing, represents one of the major causes of neonatal encephalopathy with long term consequences for infants. Here, degraded spectral and temporal responses to sounds were recorded from neurons in the primary auditory cortex (A1) of adult rats exposed to asphyxia at birth. Response onset latencies and durations were increased. Response amplitudes were reduced. Tuning curves were broader. Degraded successive-stimulus masking inhibitory mechanisms were associated with a reduced capability of neurons to follow higher-rate repetitive stimuli. The architecture of peripheral inner ear sensory epithelium was preserved, suggesting that recorded abnormalities can be of central origin. Some implications of these findings for the genesis of language perception deficits or for impaired language expression recorded in developmental disorders, such as autism spectrum disorders, contributed to by perinatal asphyxia, are discussed

    Probing Real Sensory Worlds of Receivers with Unsupervised Clustering

    Get PDF
    The task of an organism to extract information about the external environment from sensory signals is based entirely on the analysis of ongoing afferent spike activity provided by the sense organs. We investigate the processing of auditory stimuli by an acoustic interneuron of insects. In contrast to most previous work we do this by using stimuli and neurophysiological recordings directly in the nocturnal tropical rainforest, where the insect communicates. Different from typical recordings in sound proof laboratories, strong environmental noise from multiple sound sources interferes with the perception of acoustic signals in these realistic scenarios. We apply a recently developed unsupervised machine learning algorithm based on probabilistic inference to find frequently occurring firing patterns in the response of the acoustic interneuron. We can thus ask how much information the central nervous system of the receiver can extract from bursts without ever being told which type and which variants of bursts are characteristic for particular stimuli. Our results show that the reliability of burst coding in the time domain is so high that identical stimuli lead to extremely similar spike pattern responses, even for different preparations on different dates, and even if one of the preparations is recorded outdoors and the other one in the sound proof lab. Simultaneous recordings in two preparations exposed to the same acoustic environment reveal that characteristics of burst patterns are largely preserved among individuals of the same species. Our study shows that burst coding can provide a reliable mechanism for acoustic insects to classify and discriminate signals under very noisy real-world conditions. This gives new insights into the neural mechanisms potentially used by bushcrickets to discriminate conspecific songs from sounds of predators in similar carrier frequency bands
    • …
    corecore