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RESEARCH ARTICLE Open Access

Developmental remodeling of relay cells in
the dorsal lateral geniculate nucleus in the
absence of retinal input
Rana N. El-Danaf1, Thomas E. Krahe2, Emily K. Dilger3, Martha E. Bickford4, Michael A. Fox5,6 and William Guido4*

Abstract

Background: The dorsal lateral geniculate nucleus (dLGN) of the mouse has been an important experimental model for
understanding thalamic circuit development. The developmental remodeling of retinal projections has been the primary
focus, however much less is known about the maturation of their synaptic targets, the relay cells of the dLGN. Here we
examined the growth and maturation of relay cells during the first few weeks of life and addressed whether early retinal
innervation affects their development. To accomplish this we utilized the math5 null (math5−/−) mouse, a mutant lacking
retinal ganglion cells and central projections.

Results: The absence of retinogeniculate axon innervation led to an overall shrinkage of dLGN and disrupted
the pattern of dendritic growth among developing relay cells. 3-D reconstructions of biocytin filled neurons
from math5−/− mice showed that in the absence of retinal input relay cells undergo a period of exuberant
dendritic growth and branching, followed by branch elimination and an overall attenuation in dendritic field
size. However, math5−/− relay cells retained a sufficient degree of complexity and class specificity, as well as
their basic membrane properties and spike firing characteristics.

Conclusions: Retinal innervation plays an important trophic role in dLGN development. Additional support
perhaps arising from non-retinal innervation and signaling is likely to contribute to the stabilization of their
dendritic form and function.

Keywords: Dorsal lateral geniculate nucleus, Retinogeniculate pathway, Relay cells, Retinal ganglion cells,
Dendritic development, math5 null

Background
The dorsal lateral geniculate nucleus (dLGN) of the
mouse thalamus has become a powerful model system to
understand visual circuit development [23, 26, 27]. It has
been especially useful for delineating the mechanisms
underlying the establishment of the retinogeniculate path-
way. A crucial element of this pathway is the synaptic tar-
get of retinal ganglion cells (RGCs), the relay cells of
dLGN. These neurons serve as the principal conduit of in-
formation between the retina and visual cortex. Addition-
ally, dLGN relay cells are the major site of convergence
for a number of non-retinal inputs that work in concert to

modulate the gain of retinogeniculate transmission in a
state dependent manner [5, 48, 49].
Despite playing such a key role in visual processing,

until recently little was known about the structural and
functional composition of mouse dLGN relay cells. We
found that mouse dLGN relay cells have highly stereotypic
dendritic architecture and are readily classified as having
X -, Y- or W-like profiles [30]. The distinguishing features
of their dendritic morphology develop remarkably early in
postnatal life. After the first postnatal week relay neurons
have highly complex dendritic fields that already begin to
resemble their adult counterparts. Accompanying this
growth is the rapid maturation of their active membrane
properties and spike firing characteristics. Such coordin-
ation enables relay cells to receive, integrate, and transmit
retinal signals accurately by the time of natural eye
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opening [19, 28, 30, 36], when retinal activity switches
from spontaneous to visually evoked [18, 53].
What remains unexplored is an understanding of

the mechanisms that contribute to the development
of relay cells. A prevailing view relates to the
“synaptotrophic” hypothesis, which underscores the
necessity of early synapse formation as a driving
force for neuronal maturation (reviewed in [14, 56]).
A likely candidate for dLGN relay cells is the sup-
port provided by retinal input [15]. These axons in-
nervate the dLGN at perinatal ages, a time just after
the nucleus takes shape and neuronal differentiation
is completed [1, 22, 28]. Soon after birth newly
formed axon terminals form functional synapses with
dLGN cells [28, 40], and by postnatal week 2 retino-
geniculate synapses begin to take on adult-like pro-
files [5].
A number of studies have adopted a loss of func-

tion approach to assess whether early retinal input
and synapse formation contribute to dLGN develop-
ment. However many of the manipulations to remove or
silence retinal input did not focus on the development of
relay cells per se [6, 25, 62], or more importantly, were
done well after the time of early retinal innervation and
synapse formation [6, 44, 47, 52]. Past attempts to employ
a genetic form of deafferentation have also been problem-
atic since “eyeless” phenotypes often involve a polygenic
form of inheritance and are accompanied by other muta-
tions that may have an indirect impact on neuronal devel-
opment [16, 55, 58].
To overcome these issues we employed a relatively

novel genetic form of retinal deafferentation by taking
advantage of the math5 null mutant mouse (math5−/−).
Math5 is a basic helix-loop-helix (bHLH) gene that is
expressed in the retina starting at embryonic day (E) 11
and is essential for the differentiation of retinal progeni-
tor cells into RGCs [8]. As a consequence, math5−/− ex-
hibits a wholesale loss (>95 %) of RGCs [9, 41, 60], as
well as a failure of the surviving cells to form an optic
nerve [9, 10, 61]. Thus, this form of genetic deafferen-
tation ensures that dLGN is devoid of retinal innervation
even prior to perinatal times when retinal axons nor-
mally enter the nucleus. Here we made use of this

mouse along with age matched wild types (WT) to
understand whether retinal innervation affects the devel-
opment of dLGN relay cells.

Results
Math5 expression in WT retina and dLGN
Math5 mRNA encodes a transcription factor that speci-
fies RGC fate [8, 9, 60]. Embryonically, math5 is
expressed in the retina as well as the tenth cranial gan-
glion [8]. In the retina, math5 is developmentally regu-
lated, first appearing at E11, continuing through birth
but absent in the adult [8, 9, 60]. However, there are
some reports of math5 expression in adult brain regions
such as cerebellum and the ventral cochlear nucleus
[45]. A closer examination of math5 expression in cen-
tral visual targets such as dLGN is lacking. Here we ex-
amined math5 expression in the developing retina and
dLGN using RT-PCR (Fig. 1; retina: n = 2 at each age;
dLGN: n = 10 per age). As expected, in WT mice, math5
was expressed in the retina between E13-P3, but absent
at P13 and in the adult. Moreover, in WT dLGN we
found no evidence of math5 expression at any of the
ages tested (e.g., P2, 3, 14, adult). Thus any reported
changes observed among developing relay cells in
math5−/− cannot be attributed to the lack of math5
in dLGN neurons, but rather is due to a direct con-
sequence of RGC elimination.

Absence of retinal input in math5−/−

While math5−/− mice appear to lack an optic nerve, it is
not clear whether the few remaining RCGs grow axons
that enter the brain and innervate retino-recipient targets
([9, 10, 60, 61], but see [54]). To test for this possibility,
the anterograde tracer CTB conjugated to different Alexa
fluorescent dyes was injected into each eye of math5−/−

and WT mice (Fig. 2). This technique allows for the
visualization of retinal terminal fields in central visual
structures [28]. In WT mice, robust labeling of retinal ter-
minals was apparent in all retino-recipient targets. For ex-
ample in Fig. 2a, retinal axons from each eye innervated
the suprachiasmatic nucleus (SCN) and formed overlap-
ping terminal fields, whereas in dLGN they formed non-
overlapping eye specific domains (Fig. 2d). By contrast,

Fig. 1 Math5 expression in retina and dLGN of WT mouse. RT-PCR showing the expression of math5 in WT retina and dLGN at different embryonic
(E) and postnatal (P) ages. Math5 expression is transient and restricted to the retina, appearing between E13 and P3. Note the absence of math5 expression
in dLGN at all ages. Gapdh (glyceraldehyde-3-phosphate dehydrogenase) is used as a control
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eye injections of CTB made in math5−/− between P2-P48
(n = 8) failed to reveal any labeled elements in regions that
correspond to optic nerve, optic tract or retino-recipient
targets such as SCN or dLGN (Fig. 2b, e; see also [10, 61]).
To further confirm the absence of retinal innervation in

the dLGN, we used immunohistochemistry to detect the
type 2 vesicular glutamate transporter (VGluT2), a reliable
marker for retinal terminals in dLGN [21, 24, 31] (Fig. 3a).
In a P14 math5−/− mouse, there was almost a complete ab-
sence of VGluT2 in dLGN (Fig. 3b). The weak and sparse
labeling we did detect was similar to the labeling pattern
seen after a 7-day binocular enucleation (Fig. 3c), suggest-
ing that the trace amounts of VGluT2 in math5−/− dLGN,
were of non-retinal origin [21, 24].
An ultrastructural analysis of the types of synapses found

in dLGN of math5−/− mice confirmed these findings
(Fig. 3d-e). To distinguish excitatory from inhibitory pro-
files, we labeled those that contained gamma-aminobutyric
acid (GABA) using an antibody that was subsequently
tagged with gold particles. In WT mice, retinogeniculate
terminals are characterized as large non-GABAergic pro-
files that contain round vesicles and pale mitochondria
(RLP profiles, Fig. 3d, blue) [5]. In a sample of images from
the dLGN of a WT mouse, (20 images at P21), we identi-
fied 29 RLP profiles with a mean area of 0.95 ± 0.11 μm2.
Other non-GABAergic profiles were also abundant (n = 49)
and had an average area of 0.51 ± 0.4 μm2; see also [5]. By
contrast, in a sample of images from an age-matched
math5−/− (20 images), we failed to detect any RLP profiles.
However, the overall population of non-GABAergic
terminals present in math5−/− mice (n = 46) was

comparable in size to WT (WT, 0.68 ± 0.05 μm2 vs.
math5−/−, 0.67 ± 0.08 μm2, Student’s t-test, p = 0.97).
Interestingly, in math5−/− mice, we noted the presence of
non-GABAergic terminals characterized by having round
vesicles, large profiles and dark mitochondria (RLD profiles)
(Fig. 3e, blue, [20]). These so-called RLD profiles,
which appear to supplant RLP profiles in math5−/−

mice have been observed in enucleated, anophthal-
mic and microphthamic strains of mice, but their
origin is yet to be determined [16, 29, 63]. Taken to-
gether, these results indicate that the dLGN of
math5−/− mice serves as a suitable model for study-
ing the development of relay cells in the absence of
retinal innervation and signaling.

Cytoarchitecture of the developing dLGN in WT and
math5−/− mice
First we examined whether the absence of retinal input in
math5−/− mice affected the overall growth and cytoarchi-
tecture of the developing dLGN. We used Nissl stain to
delineate the boundaries of dLGN from surrounding nuclei,
and to measure the area of the dLGN. Figure 4a, shows
examples of coronal sections at each week for WT (n = 51)
and math5−/− (n = 79). In WT mice, there was a 3-fold
increase in dLGN area between postnatal weeks 1–3
(Fig. 4a,c; n = 33 week1, 10.8×102 mm2 vs. n = 7 week3,
31.2×102 mm2; Tamhane post hoc test, p <0.0001). Bet-
ween three and five weeks the dLGN area remained
stable (week 5, n = 4, 31.1×102 mm2). In math5−/−,
dLGN and surrounding nuclei were readily apparent
(Fig. 4a, bottom row) and showed a 1.7-fold increase

Fig. 2 Absence of retinal projections in SCN and dLGN of math5−/−. Anterograde labeling of retinal projections with CTB in the SCN and dLGN of
WT (a, d) and math5−/− (b, e) adult mice. Retinal projections are visualized by injecting CTB conjugated to Alexa 488 (green; contralateral
projections) in one eye and Alexa 594 (red; ipsilateral projections) in the other eye. Shown are coronal sections depicting SCN and dLGN for WT
(a, d) and math5−/− (b, e). Inverted grey scale images in B and E depict the complete absence of CTB labeling in math5−/−. (c, f) Corresponding
DAPI images for sections (b) and (e). Dashed lines outline the boundaries of dLGN and SCN, and scale bar = 200 μm
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in area that peaked by postnatal week 3 (n =
35 week1, 8.9×102 mm2 vs. n =
8 week3, 15.2×102 mm2; Bonferroni post hoc test, p
<0.0001). Between weeks 3–5 the size of dLGN de-
creased, so that by the fifth week, the area was compar-
able to postnatal week 1 values (n = 7, Bonferroni post
hoc test, p <0.01). However compared to WT, math5−/−

dLGN was significantly smaller and after week 1 showed
roughly a 50 % reduction in size (Student’s t-test;
weeks1, 3–5 p <0.0001; week2 p <0.01).
We also used these Nissl stained sections to obtain es-

timates of cell density (Fig. 4b). In WT (n = 22 dLGN sec-
tions), there was no significant difference in the density of
dLGN cells with age (Fig. 4b,d; Cell density n = 5 week1,
45.7 ± 8.8 cells/104 μm2 vs. n = 3 week2, 31.7 ± 3.3 cells/
104 μm2; n = 6 week3, 28.3 ± 1.2 cells/104 μm2; n =
4 week4, 30.6 ± 1.3 cells/104 μm2; n = 4 week5, 25.6 ± 0.7

cells/104 μm2; Student’s t-test, p >0.06). In math5−/−

(n = 38 dLGN sections), there was roughly a 40 % re-
duction in cell density between postnatal weeks 1–3
(n = 4 week1, 60.6 ± 4.7 cells/104 μm2 vs. n = 7 week3,
35.8 ± 0.4 cells/104 μm2; Student’s t-test, p <0.0001).
Between weeks 3–5, cell density stabilized (n = 8 week5,
34.1 ± 1.3 cells/104 μm2; Student’s t-test, p = 0.26). Com-
pared to WT, cell density was significantly higher in
math5−/− at weeks 2–5 (t-test, p <0.003; week 1 Student’s
t-test, p = 0.2). Thus for math5−/−, the reduction in dLGN
size does not appear to be a consequence of cell loss.

Morphological characteristics of developing relay cells in
WT and math5−/− mice
In order to examine whether the absence of retinal
input influences the morphological development of
relay cells we made in vitro recordings from acutely

Fig. 3 Absence of retinal terminals in dLGN of math5−/−. a-c Coronal sections of dLGN showing the labeling pattern of the retinal terminal
marker vesicular glutamate transporter 2 (VGluT2) in WT (a), math5−/− (b), and math5−/− seven days after binocular enucleation (c). At P14, there is
strong expression of VGluT2 in WT and almost a complete absence in math5−/− (b), comparable to levels observed after binocular enucleation (c).
Insets show high power images corresponding to the area denoted by the asterisk. Dashed lines in (a), (b), and (c) outline the border of dLGN,
and scale bar for (a, b, c) = 200 μm, and 110 μm for the insets. d-e) Electron microscopy images revealing the ultrastructure of the dLGN in WT
(d) and math5−/− mice (e). d Retinal terminals in WT mice (blue) include distinctive pale mitochondria (white asterisks). These terminals primarily
synapse (arrows) on non-GABAergic dendrites (green), which often extend small protrusions into the presynaptic retinal terminals. E) In math5−/−

mice, the dLGN contains no terminals with pale mitochondria. Instead, large profiles (blue) with dark mitochondria (black asterisks) form synaptic
arrangements that are similar to retinal terminals, including contacts on non-GABAergic dendritic protrusions (green). GABAergic profiles (pink)
are identified by a high density of overlying gold particles. Scale bar = 1 μm and applies to both panels
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Fig. 4 Cytoarchitecture of dLGN in WT and math5−/−. a Coronal sections of dLGN stained for Nissl at different postnatal weeks in WT (top panels)
and math5−/− (bottom panels). In math5−/−, dLGN boundaries are well delineated, but the nucleus is smaller compared to WT (vLGN: ventral
lateral geniculate nucleus). Scale bar = 200 μm. b High power images of Nissl stained dLGN cells at different postnatal weeks in WT (top panels)
and math5 −/− (bottom panels). Scale bar = 20 μm. c Scatter plot depicting the mean dLGN area ± SEM as a function of postnatal week in WT
(black) and math5−/− (red). Compared to WT, the dLGN of math5−/− was smaller at all weeks (*, weeks 1, 3–5 p <0.0001; week2 p <0.01). d Scatter
plot showing cell density (±SEM) as a function of postnatal week in WT (black) and math5−/− (red). Compared to WT, cell density was significantly
higher in math5−/− in weeks 2–5 (*, Student’s t-test, p <0.003)
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prepared slices containing the dLGN and filled cells
with biocytin [30]. We then conducted multi-photon
laser scanning microcopy to generate 3D reconstructions.
Figure 5 shows representative examples of biocytin filled
relay cells at different postnatal ages in WT and math5−/−

mice. At all ages examined, math5−/− cells had large
somata, multipolar dendrites, and axons that exit the nu-
cleus (Fig. 5, arrowheads). Qualitatively, math5−/− relay cells
appeared similar to age matched WTs. However, quantita-
tive analysis revealed a number of differences in their
growth patterns and dendritic architecture.

Somatic and dendritic surface area of relay cells
Using the Volocity software, surface area was mea-
sured by highlighting the soma and dendrites in the
X, Y and Z planes. In WT relay cells, there was a
significant increase in dendritic surface area with age
(Fig. 6a; n = 69 cells; one-way ANOVA, F = 9.103,
p <0.0001). There was about a 3-fold increase between the
first and third postnatal weeks (n = 8 week 1, 1.64×104 ±
6.58×103 μm2 vs. n = 19 week3, 5.21×104 ± 6.21×103 μm2;
Bonferroni post hoc test, p <0.0001). After this time,

dendritic surface area showed no significant changes
through postnatal week 5 (n = 8, 5.12×104 ± 6.58×103 μm2;
Bonferroni post hoc test, p = 1). While dendritic area in-
creased with age, soma surface area remained relatively
constant throughout postnatal weeks 1–5. (Fig. 6b; one-way
ANOVA, F = 0 .444, p = 0.777; see also [30].
In math5−/− mutants (n = 55 cells), there was a steady in-

crease in dendritic surface area that peaked by the third
postnatal week and represented roughly a 4-fold increase
compared to postnatal week 1 (Fig. 6a; n = 7 week1,
1.41×104 ± 1.08×104 μm2 vs. n = 17 week3, 6.34×104 ±
6.93×103 μm2; Bonferroni post hoc test, p <0.01). However,
between weeks 3 and 5 dendritic area declined, and was
comparable to week 1 values (n = 8, 2.68×104 ± 1.28×104

μm2; Bonferroni post hoc test, p = 1). Soma surface area
showed a similar growth pattern, increasing steadily
through the third postnatal week but then showing a re-
duction in weeks 4–5 (Fig. 6b; n = 17 week3, 1.26×103 ±
1.49×102 μm2 vs. n = 5 week5, 7.31×102 ± 2.76×102 μm2;
Tamhane post hoc test, p <0.01).
Comparisons between WT and math5−/− relay cells re-

vealed that dendritic surface area was comparable during

Fig. 5 Biocytin filled relay cells in dLGN of WT and math5−/−. Examples of relay cells arranged by postnatal week (1–5) for WT (left panel) and
math5−/− (right). Three-dimensional reconstructions are based on Z-stack images of representative relay neurons filled with biocytin. Arrowhead
points to the axon. Scale bar = 58 μm

El-Danaf et al. Neural Development  (2015) 10:19 Page 6 of 17



postnatal weeks 1, 3 and 4. However, math5−/− relay cells
showed a significant increase in dendritic surface area dur-
ing postnatal week 2 (Fig. 6a; n = 25 WT, 2.59×104 ±
3.73×103 μm2 vs. n = 17 math5−/−, 4.94×104 ± 6.93×103

μm2; Student’s t-test, p <0.01). Such growth was not sus-
tained and by the fifth postnatal week, relay cells in
math5−/− were significantly smaller than those in
WT (Fig. 6a; n = 8 WT, 5.12×104 ± 6.58×103 μm2 vs.
n = 5 math5−/−, 2.68×104 ± 1.28×104 μm2; Student’s t-
test, p <0.05). Overall, soma surface area in math5−/−

mice was significantly smaller than WT (Fig. 6b, Student’s
t-test, p <0.05; but see week 4 n = 9 WT, 1.91×103 ±
3.87×102 μm2 vs. n = 8 math5−/−, 1.08×103 ± 2.18×102

μm2; Student’s t-test, p = 0.9).
Relay cells in math5−/− mice showed fluctuations

in dendritic growth compared to WT, initially ex-
periencing exuberant growth (week 1–3), followed by
a progressive decline (week 4–5). To address
whether these changes were due to the lengthening
and sprouting of new branches (exuberant growth),
or the shrinkage and pruning of dendrites (decline),
we examined overall dendritic field, the number of
branches, and branching patterns.

Dendritic field
Using Volocity software, we measured the maximal
dendritic extent in the X, Y, and Z axes, then multi-
plied the values to obtain an estimate of dendritic
field. In WT, relay cells underwent a progressive in-
crease in dendritic field size until the third postnatal
week (Fig. 6c; n = 82; one-way ANOVA, F = 16.97,
p <0.0001). Between weeks 3–5, fields stabilized, and
overall showed a 5-fold increase compared to week 1
(Fig. 6c; n = 10 week 1, 6.35×105 ± 2.93×105 μm3 vs.
n = 10 week 5, 3.19×106 ± 2.93×105 μm3; Bonferroni
post hoc test, p <0.0001).
In math5−/− relay cells (n = 58), dendritic fields in-

creased over the first 4 postnatal weeks and experienced
a 3-fold increase compared to week 1 (Fig. 6c; n = 8
postnatal week 1, 7.20×105 ± 4.18×105 μm3 vs. n = 10
postnatal week 4, 2.52×106 ± 3.74×105 μm3; Tamhane
post hoc test. p <0.01). By week 5, dendritic field values
declined further but were not significantly different from
week 4 (n = 5 postnatal week 5, 1.77×106 ± 5.29×105

μm3; Tamhane post hoc test, p = 0.12).
Compared to WT, math5−/− relay cells showed com-

parable changes in dendritic field area throughout the

Fig. 6 Morphological development of relay cells in WT and math5−/−. Summary scatter plots depicting dendritic surface area (a), soma surface area
(b), dendritic field (c) and total number of branches (d) for relay cells in WT (black) and math5−/− (red). Each point represents mean values ± SEM
plotted as a function of postnatal age. a Dendritic surface area is greater in math5−/− than WT at week 2 (*, p <0.01), but smaller at week 5 (*, p <0.05).
b Overall, soma surface area in math5−/− is less than WT (*, p <0.05). c WT and math5−/− have similar field dimensions during weeks 1–4, but math5−/−

are smaller than WT at week 5 (*, p <0.01). d. At week 2, math5−/− cells exhibit an exuberant branching compared to WT (*, p <0.01)
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first 4 postnatal weeks. However, math5−/− relay cells
were significantly smaller than WT at postnatal week 5
(Student’s t-test, p <0.01) suggesting arrested growth.

Dendritic complexity
We examined the total number of dendritic branches
and the pattern of branching for individual relay cells in
the Z-plane by identifying primary dendrites, and their
successive daughter branches [30].
In WT relay cells, the total number of branches

increased with age (Fig. 6d; n = 40, one-way ANOVA,
F = 9.67, p <0.0001). Between weeks 1 and 2, relay
cells displayed a 2-fold increase in dendritic bran-
ches but then stabilized through weeks 2–5 (see also
[30]). On average, WT cells had 49.4 ± 7.3 total
branches during the first week and 98.2 ± 3.8 there-
after. In math5−/− relay cells, dendritic branching also
showed significant changes with age (Fig. 6d; n = 51,
one-way ANOVA, F = 13.557, p <0.0001). Between
weeks 1–2, branch numbers increased from a mean
of 58.1 ± 7.7 (n = 8) to 126.5 ± 5.6 (n = 15; Bonferroni
post hoc test, p <0.0001). However, this increase was
transient, so that by the fifth week the number of dendritic
branches was reduced to a mean of 82.0 ± 3.7 (n = 4;
Bonferroni post hoc test, p <0.01). Moreover, when com-
pared to WT, math5−/− relay cells showed significantly
higher numbers of dendritic branches during postnatal
week 2 (Fig. 6d; n = 9 WT, 99.7 ± 6.9 vs. n = 15 math5−/−,
126.5 ± 5.6; Student’s t-test, p <0.01).
To examine dendritic branching patterns we calculated

the number of branch points as a function of branch
order. Figure 7a depicts summary plots for these relation-
ships. At all ages both WT and math5−/− cells had 6–7
primary dendrites, with the highest number of branching
occurring between the 3rd-5th orders. Week by week com-
parisons of branch complexity between WT and math5−/−

relay cells are shown in Fig. 7b. During week 1, math5−/−

relay cells showed increased numbers of 6th order
branches (n = 8 WT, 1.0 ± 0.4 vs. n = 8 math5−/−, 4.0 ± 0.9;
Student’s t-test, p <0.01). Branch order continued to ex-
pand during week 2, so that math5−/− cells had signifi-
cantly more 6th -10th order dendritic segments compared
to WT(Student’s t-test, branch orders 6–8 p <0.0001,
branch orders 9–10 p <0.01). However, increased sprout-
ing was transient, so that by weeks 3–4 there were no dif-
ferences in the total numbers of dendritic branches or
branch order compared to WT cells (Figs. 6d and 7b).
Moreover, by week, 5, additional losses were observed
among 2-4th order segments (Fig. 7b; n = 5 WT vs. n = 4
math5−/−, Student’s t-test, branch orders 2–4 p <0.05).
In sum, these analyses show that the increased dendritic

surface area noted in week 2 for math5−/− relay cells is
due to exuberant dendritic branching, especially among
higher order segments (Figs. 6a, d and 7b). Furthermore,

the reduction in dendritic surface area at week 5 is likely a
consequence of attenuation in dendritic field as well as a
continued loss of dendritic branches (Fig. 6a, c and 7b).

Relay cell class specificity and location in math5−/− dLGN
Recently we showed that relay cells can be divided into
three classes that have distinct dendritic architecture
and strong regional preferences in dLGN [30]. This clas-
sification scheme was based on a Scholl ring analysis
and the computation of a dendritic orientation index
(DOi) that was based on the number of intersections
found in each of four axial planes [30]. Cells with a DOi
between 0–0.49 had a bi-conical morphology (X-like);
those with values between 0.50-0.79 had a hemispheric
profile (W-like), while those between 0.80-1.0 were radi-
ally symmetric (Y-like). Using the identical approach, we
analyzed the dendritic architecture of 42 relay cells in
math5−/− dLGN. Similar to our previous study, we lim-
ited our analysis to postnatal weeks 2–5, at times when
total dendritic branching stabilizes (Fig. 6d; see also
[30]). Despite the transient increase in branching in week
2 and the subsequent loss in week 5, math5−/− relay cells
were of sufficient complexity to retain their identity.
Figure 8a depicts representative examples (see also Fig. 5,
weeks 2–5). A total of 13 cells were classified as Y-like with
DOi values ranging between 0.81-0.97, 13 as X-like
(DOi = 0.09-0.4) and 16 as W-like (DOi = 0.47-0.72).
Figure 8b depicts the relative position of identified

X-, Y-, and W- like cells within the boundaries of
the math5−/− dLGN. Because of the reduced size of
the math5−/− dLGN, it became difficult to sample
specific regions in an unbiased way during the re-
cording, especially along the ventromedial border.
Additionally, the associated compression makes it
difficult to compare regional preferences with their
age-matched WT counterparts. Nonetheless, similar
to the regional preferences of cell types noted in
WT dLGN [30], a qualitative examination of cell lo-
cation in the math5−/− dLGN revealed that Y-like
cells resided in a central band throughout the nu-
cleus and W-like cells were preferentially located
along the dorsal border of the dLGN (Fig. 8b).
Finally, it is important to note that the changes in

math5−/− dendritic architecture noted at postnatal week
two (Fig. 6) were unlikely restricted to a specific cell
class. For math5−/−, each cell class showed an in-
crease in branch number and dendritic surface area
compared to WT counterparts (branch number
math5−/− vs WT: X-cells: n = 4 mean = 115.5 vs n = 2
mean = 88.5, Y-cells n = 3 mean = 121.0 vs n = 3
mean = 112.0, W-cells n = 8 mean = 134.2 vs n = 3
mean = 96.0; dendritic surface area math5−/− vs WT:
X-cells n = 5 mean = 37,036 vs n = 8 mean = 17,737,
Y-cells n = 3 46,647 vs n = 11 mean = 25,227, W-cells
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n = 9 mean 54,807 vs n = 6 mean = 30,527) and had
values that were similar to their respective group
mean (Fig. 6a and d)

Membrane properties of relay cells in math5−/− dLGN
The intrinsic membrane properties of relay cells in the
math5−/− dLGN were examined by conducting in vitro
whole cell recordings prior to filling them with biocytin.

We recorded the voltage responses to square wave
current pulses of varying duration and intensity deliv-
ered through the recording pipette (e.g. ± 0.01 nA,
1000 ms, 0.0025 nA increments). The passive properties
of input resistance and tau (τ) were calculated by exam-
ining the voltage response to a small hyperpolarizing
current pulse (−0.01 nA). As in WT (n = 116), math5−/−

relay cells (n = 133) showed a decrease in input

Fig. 7 Analysis of dendritic branching patterns of relay cells for WT and math5−/−. a Summary plots depicting the mean ± SEM number of branch
points for relay cells as a function of branch order at different postnatal weeks (1–5) in WT (left panel) and math5−/− (right panel). In WT,
branching patterns is conserved between weeks 2–5, but highly variable in math5−/−. b Comparison of the branching patterns between WT
(black) and math5−/− (red) at different postnatal weeks. At week 1–2, math5−/− has increased numbers of higher order branching (6th-10th order).
At weeks 3–4, branching patterns are similar in WT and math5−/−. At week 5, math5−/− has reduced numbers of 2nd-4th order branches. (*, week
1, p <0.01; week 2, branch orders 6–8, p <0.0001 and branch orders 9–10, p <0.01; week 5, branch orders 2–4, p <0.05)
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resistance with age (Fig. 9a). However, input resistance
was significantly higher in math5−/− cells at all studied
ages compared to WT (Fig. 9a; Student’s t-test, week 1,
4–5 p <0.05, week 2–3 p <0.0001). These differences can
be in part explained by the reduced soma area seen in
math5−/− (Fig. 6b). In WT cells (n = 51), τ remained rela-
tively stable with age (Fig. 9b), but showed a progressive
decrease in math5−/− (n = 61). Compared to WT, math5−/−

had similar τ during week 1 (n = 8 WT, 39.5 ± 5.1 ms vs.
n = 8 math5−/−, 40.3 ± 4.02 ms; Student’s t-test, p = 0.09),
but then became significantly shorter between weeks 2–5
(Student’s t-test, week 2–5 p <0.01). Such a pattern may
be due to the smaller dendritic fields observed in
math5−/− (Fig. 6a and c).
Examples of voltage responses to current steps in

math5−/− cells are shown in Fig. 9c. Many of the
voltage-gated conductances noted in WT were also
present in math5−/− age matched cells (not shown
but see [19, 28, 30, 36]). For example in math5−/−

relay cells, membrane hyperpolarization evoked a
strong inward rectification. This large depolarizing
sag in the voltage response reflects the activation of
the mixed cation conductance (H) [28, 32]. In
addition, the termination of membrane hyperpolari-
zation activated a t-type Ca2+ conductance that pro-
duced a rebound low-threshold calcium spike (LTS),
along with a burst of Na+ spikes that ride the peak

of this triangular depolarization. With membrane
depolarization, relay cells exhibited an outward recti-
fication that delayed spike firing and reflected the
activation of a transient (A) type K+ conductance
[32, 36, 38]. Strong and sustained levels of mem-
brane depolarization readily evoked a train of action
potentials that exhibited spike frequency accommo-
dation, an event attributed to the activation of K+

conductances that produce an after hyperpolarizing
response between spikes (AHP) [32, 36].
Overall, these observations indicate that the intrinsic

membrane properties and spike firing of relay cells remain
largely unaffected by the absence of retinal innervation.

Discussion
Our data from WT mice suggest that dLGN relay cells
undergo two growth spurts [43]. The major elements and
timing of these events are outlined in Fig. 10. The first
phase takes place during postnatal week 1, as dendritic
branches increase in number and grow in length to form
highly stereotypic architecture and cell class specificity [30].
The second phase occurs during postnatal weeks 2–3
where there is a progressive increase in dendritic field size.
During this time no additional branch elaboration occurs
and the overall complexity of dendritic arbors remains
stable. The timing of these growth spurts corresponds to a
progressive increase in dLGN size, and like the maturation

Fig. 8 Relay cell class specificity is preserved in dLGN of math5−/−. a Projection images of 3D rendered relay neurons in math5−/− showing the
three morphologically identified classes of relay cells; left: X-like with bi-conical dendritic morphology; middle: Y-like with radially oriented dendritic
arbors; and right W-like with hemispherical morphology. Classification is based on a DOi as described in [30] (Krahe et al., 2011). Scale bar = 58 μm.
b Scatter plot depicting the location of relay cells in the dLGN of math5−/−. Dashed lines represent superimposed coronal slices (300 μm thick) delineating
the outlines of dLGN. Colors depict identified cell types (X-like: red; Y-like: green; W-like: blue)
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Fig. 9 (See legend on next page.)
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of relay cells, the nucleus assumes an adult-like profile by
postnatal week 3 [25].
Our results in math5−/− mutants indicate that the ab-

sence of retinal innervation disrupts the normal growth
and maturation of dLGN relay cells (Fig. 10). Initially
relay cells in math5−/− follow a similar growth trajectory
as age matched WT cells. However, they undergo an ex-
tended period of branch elaboration, showing an in-
crease in branch number and length throughout
postnatal week 2. Such exuberant branching is not main-
tained. In fact, the total number of branches and overall
branch order declines through postnatal week 5, and
leads to an overall reduction in dendritic surface area.
Accompanying these dystrophic changes is shrinkage in
the overall size of dLGN.

Taken together, these data suggest that retinal in-
nervation plays an important trophic role in dLGN
development. Indeed, the development of the retino-
geniculate pathway seems to satisfy many of the key
elements for “synaptotrophic” support (reviewed in
[56] and [14]). A major tenant for such support is
that dendritic development and synapse formation/
maturation are concurrent. Retinal axons arrive in
dLGN at perinatal ages, and by early postnatal life
fully innervate the dLGN [22, 28, 42]. Soon after in-
nervation retinal axons form functional synapses with
developing dLGN cells [5, 28]. These newly formed
synapses are of sufficient excitatory strength to drive
action potentials in dLGN relay cells [5, 28, 33, 40].
Such excitatory drive is provided by spontaneous

(See figure on previous page.)
Fig. 9 Passive and active membrane properties of relay cells in WT and math5−/−. a Scatter plot showing mean input resistance ± SEM
in WT (black) and math5−/− (red) at different postnatal weeks. Estimates based on steady state voltage responses evoked by −0.01 nA
current pulse. Overall, math5−/− have higher input resistance than WT (*, week 1, 4–5 p <0.05, week 2–3 p <0.0001). b The decay
constant tau as determined by a single exponential fit to a −0.01 nA current injection for the first 200 ms of recording. Math5−/−

(red) have a shorter τ than WT (black, *, p <0.0001). c Examples of the voltage responses to current injection for math5−/− relay cells
at different postnatal weeks. Math5−/− relay cells possess the full complement of membrane properties as in WT. These include a
depolarizing sag mediated by a mixed cation conductance (H), a rebound low threshold Ca2+ spike (LTS) and burst firing (B), an
outward rectifying response that delays spike firing (A), and spike frequency accommodation (AHP)

Fig. 10 Development of relay cells in WT and math5−/−. Schematic summarizing the development of relay cells in WT (top row) and math5−/−

(bottom row). Roman numerals (I, II) represent identified growth spurts in WT. Highlighted boxes depict the nature and timing of growth.
Outlines of dLGN are drawn to scale, 200 μm
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wave like activity of RGCs that prevail prior to the
onset vision [18, 35, 40]. Additionally, dendritic mat-
uration of relay cells coincides with a highly active
period of synaptic remodeling and maturation. Struc-
turally, retinal profiles (RLP) expand in size and com-
plexity, showing a dense clustering of vesicles [5].
Functionally, developing dLGN cells receive relatively
weak synaptic input from as many a dozen or so
RGCs [13, 28, 64]. By postnatal week 2 many of these
inputs are eliminated and the remaining few show a
substantial increase in synaptic strength, as well as a
shift in NMDA to AMPA receptor composition
(reviewed in [23, 26, 33]).
Our results in math5−/− mutants also suggest that

retinal innervation is needed for constraining and
stabilizing the dendritic complexity of relay cells. It
is believed that developing dendrites sample their
environment and extend processes into regions
where prospective synaptic afferents are found
(reviewed in [14, 15, 57]). Perhaps the extensive den-
dritic branching we observed in math5−/− relay cells
reflects a compensatory response by these cells to
seek potential synaptic partners. This notion is con-
sistent with other reports showing that developing
neurons alter their dendritic form in response to a
disruption in afferent input (reviewed in [12, 37]).
Finally it is worth noting that retinal signaling is re-
quired for the continued maintenance of dendritic
form. In math5−/− relay cells, the exuberant branch-
ing observed during postnatal week 2 is eliminated
and followed by a modest decline in proximal den-
dritic segments.
Our results suggest that RGCs provide trophic

support that sustains the development of relay cells,
as well as to support the overall structural integrity
of dLGN. Such trophic effect for retinal axons on
the growth of dLGN has been previously described
in enucleation and anophthalmic studies where dis-
tortion and shrinkage of dLGN have been reported
[16, 25, 62]. However, the molecular mechanisms
underlying trophic support and maintenance of the
mouse dLGN remain largely unknown. A likely can-
didate is the brain-derived neurotrophic factor
(BDNF). This neurotrophin is synthesized in the ret-
ina, transported anterogradely by retinal afferents and
can bind to their high affinity receptor tyrosine kinase
(trkB) located on dLGN dendrites [2, 11, 15, 39].
Finally it is important to note that despite the dis-

ruption in growth and maturation, relay cells in the
math5−/− dLGN still retained a high degree of branch
complexity, morphological class specificity, and the
full complement of active membrane properties. Such
observations suggest that dendritic form and function
are likely regulated by other factors unrelated to

retinal innervation and signaling. One possibility is
that synaptic signaling from non-retinal inputs could
provide additional trophic support. Indeed the bulk of
synaptic input to dLGN arise from a number of non-
retinal sources, including glutamatergic neurons in
layer VI of visual cortex, cholinergic nuclei of the
brainstem, and GABAergic neurons within the thal-
amic reticular nucleus as well as intrinsic interneu-
rons within the dLGN [5, 46, 49]. Many of these
elements have been implicated in supporting developing
dendritic form and function [3, 17, 34, 50, 59] (reviewed in
[4]). Most notable are the inputs that arise from visual cor-
tex, where the infusion of neurotrophic factors leads to an
accelerated growth of relay cells [59]. Interestingly in
mouse, corticogeniculate inputs arrive at late postnatal ages,
well after retinal innervation [46]. Such timing suggests that
these descending projections are poised to contribute to
the maintenance and stability of dendritic form. In fact, in
the math5−/−, dLGN cortical inputs arrive much earlier
than in WT [7, 46], and thus could help explain why relay
cells in these mutants retain much of their overall structural
and functional integrity.

Conclusions
The dLGN of mouse has proven to be an important
model system for visual circuit development. However
there is a paucity of information regarding the develop-
ment of its principal cell type, namely thalamocortical
relay cells. Here we examined the postnatal growth and
maturation of dLGN relay cells and tested, by utilizing
math5−/− mice, the extent to which their dendritic form
and function relied on retinal innervation. We found
that the absence of retinal innervation leads to an overall
shrinkage of dLGN and disrupts the pattern of dendritic
growth of relay cells. In math5−/− dLGN, relay cells
undergo a period of exuberant dendritic growth and
branching followed by branch elimination and an overall
attenuation in dendritic field size. Despite these dys-
trophic changes, relay cells in math5−/− mice retained a
sufficient degree of complexity and cell class specificity,
as well as the full complement of membrane properties
and spike firing characteristics. Thus retinal innervation
plays an important trophic role in dLGN development,
but that additional support perhaps arising from non-
retinal innervation and signaling, contributes to
stabilization of dendritic form and function.

Methods
Subjects
All procedures carried out were approved by the Institu-
tional Animal Care and Use Committee at Virginia
Commonwealth University. Mice ranging in age between
the first and fourth postnatal weeks were studied. Two
strains were used: pigmented wild-type mice (C57/BL6),
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math5−/− on a mixed C57B6/J and 129/SvEv background
provided by S. Wang [60].

CTB injection
Injection of the anterograde tracer cholera toxin subunit
beta (CTB) were performed in order to visualize retinal
projections in the dLGN and to assess whether any sur-
viving RGCs in math5−/− had axons that exited the eye
and innervated retino-recipients targets in the brain.
Mice were anesthetized with isoflurane vapors. Using a
glass pipette, the sclera was pierced near the ora serrata
and excess vitreous fluid was drained. Using another
glass pipette attached to a picospritzer, 3–8 μl of CTB
(1.0 % solution dissolved in distilled water) conjugated
to Alexa Fluor 488 or 594 dyes (Invitrogen) were then
injected into the same opening used to drain the excess
vitreous fluid. Following eye injections, animals were
given a 2-day survival period to allow the tracer to travel
to central visual targets such as SCN or dLGN.

Acute in vitro thalamic slice preparation
Whole cell recording and filling of relay cells were done
using methods described elsewhere [5, 19, 28, 30]. Ani-
mals were anesthetized with isoflurane and decapitated.
The brain was excised and placed in a 4 °C oxygenated
(95 % O2/5 % CO2) slicing sucrose solution (in mM: 26
NaHCO3, 23.4 sucrose, 10 MgSO4, 0.11 glucose, 2.75 KCl,
1.75 Na H2PO4, 0.5 CaCl2). Slices (300 μm) were cut in the
coronal or parasagittal planes on a vibratome (Leica
VT1000S), and placed for 1 h in a 35 °C oxygenated solu-
tion of artificial cerebral spinal fluid (ACSF) (in mM: 124
NaCl, 2.5 KCl, 1.25 NaH2PO4, 2.0 MgSO4, 26 NaHCO3, 10
glucose, 2 CaCl2). Slices containing dLGN were selected for
in vitro intracellular recording in the whole cell current
clamp mode, and were perfused in an oxygenated solution
of ACSF that was kept heated at 30 °C. Cells were visual-
ized with the aid of IR-DIC optics, and were patched with
electrodes made of borosilicate glass filled with an internal
solution (in mM: 140 K gluconate, 10 HEPES, 0.3 NaCl, 2
ATP-Mg, 0.1 GTP-Na; pH 7.25) containing 5 % biocytin.
Patch electrodes were vertically pulled and had a final tip
resistance of 3–7 MΩ. Electrodes were connected to an
amplifier (Axoclamp 2B, Axon instruments). Different pro-
tocols of square wave current pulses were applied and the
resulting voltage responses were measured. Neuronal activ-
ity was digitized with an interface unit (National Instru-
ments) and stored on a computer. Data acquisition and
analysis was done using Strathclyde Electrophysiology Soft-
ware, Whole Cell Analysis Program V3.8.2.
At the end of the recording, slices were fixed overnight

with 4 % paraformaldehyde (PFA) in 0.1 M phosphate buf-
fer solution (pH = 7.2). To visualize dLGN cells filled with
biocytin, slices were washed with phosphate buffer saline
(PBS) (3×, 30 min), and incubated overnight at 4 °C in a

PBS solution containing 0.1 % Triton X-100 and 0.1 %
Alexa Fluor 647 conjugated streptavidin (Invitrogen).
Slices were washed with PBS, mounted with ProLong
Gold with DAPI (Invitrogen), and cured overnight at
room temperature.

Reconstruction of biocytin filled relay cells
Three-dimensional reconstructions and analysis were done
using methods described previously [30]. Biocytin filled
relay cells were imaged using a multi-photon laser-
scanning microscope (Zeiss LSM510 NLO Meta). A HeNe
laser (633 nm) was used to excite fluorescence from biocy-
tin filled dLGN neurons and emission was detected at a
range of 651–694 nm (Meta detector). The following
objective lenses were used to image targeted neurons at a
scanning resolution of 2048×2048 pixels: Plan-Neofluar
40× (1.3 n.a) oil immersion objective lens, or a C-
Apochromat 40× (1.2 n.a) water immersion objective lens.
3-D datasets were compiled from a sequential series of
optical slices with a step size through the Z-axis of 0.48 μm
(40×/1.2 n.a. lens) or 0.5 μm (40×/1.3 n.a. lens). 3-D
Z-stack datasets were analyzed using Volocity software
(Improvision, version 4.3.2). Image sequences were decon-
volved to reduce signal noise generated from outside the
focal plane of interest using Iterative restoration technique,
and thresholding values were set according to signal inten-
sity and background noise.

Cresyl violet nissl stain
Animals were anesthetized with isoflurane vapors,
and transcardially perfused with PBS solution for
5 min, followed by 4 % paraformaldehyde in 0.1 M
PBS (ph = 7.2) for 15–20 min. Brains were excised
and fixed overnight with 4 % PFA. Slices containing
dLGN were cut on a coronal plane with a vibratome
(70 μm), and left to dry overnight. Slices were
washed for 3 min in 95 % and 75 % ethanol solu-
tions, respectively. Slices were washed in dH2O for
1 min, before immersing them in cresyl violet stain
for 20–30 s, and then were rinsed briefly with
dH2O. Sections were washed for 3 min in 70 %,
95 %, 95 %, 100 %, 100 % ethanol solutions, respect-
ively. Finally, slices were washed in xylene twice for
5 min. Slides were mounted with Permount, and vi-
sualized with light microscopy (Olympus 1×71, Pho-
tometrics Cool snap camera), and pictures were
taken with a 10× objective lens. Images were ana-
lyzed with Metamorph software. Area measurements
were obtained from 2–4 consecutive sections
through the middle of the dLGN. Nissl stained cell
counts were calculated from a 100μm×100μm region
of interest centered in the middle of 2–3 dLGN sec-
tions. Measurements were restricted to cells in
which the soma and nucleus were clearly delineated.
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Enucleation
Binocular enucleation was done using methods de-
scribed previously [46]. The eyes were removed after
cutting the optic nerve and the ophthalmic artery.
To avoid hemorrhaging, the orbit was filled with
Gelfoam (Upjohn), and animals were allowed to re-
cover on a heating pad.

Immunohistochemistry
Slices containing dLGN were processed using anti-
body that stains for VGluT2, a vesicular glutamate
transporter found in retinal terminals [61]. On a
vibratome, 40 μm thick slices were cut on the cor-
onal plane. Before incubation, sections were rinsed
in PBS, and then treated for 1 h with blocking solu-
tion (5 % NGS, 2.5 % BSA and 0.1 % Triton X-100).
Sections were incubated overnight with the primary
antibody at 4 °C (rabbit anti-VGluT2: 1:1000, Synap-
tic Systems). Sections were rinsed with PBS, and
were incubated in the secondary antibody (1:1000 di-
lution; Alexa 594 conjugated goat anti-rabbit IgG:
1:1000, Invitrogen, Cat# A11037) for 2 h at room
temperature. Sections were rinsed in PBS, mounted
with Prolong Gold with DAPI (Invitrogen) and cured
overnight at room temperature. Sections were photo-
graphed with an upright epi-fluorescence microscope
(Nikon E600, Photometrics Cool snap camera).

RT-PCR
Retina and dLGN tissue were harvested from C57/BL6
mice at different embryonic and postnatal ages using
methods described elsewhere [51]. RNA was isolated
using the Bio-Rad Total RNA Extraction from Fibrous
and Fatty Tissue kit (Bio-Rad). Reverse transcription and
cDNA generation were made using Superscript II Reverse
Transcriptase First- Strand cDNA Synthesis kit (Invitro-
gen). The following math5 primer pairs were used:
5′- ATGGCGCTCAGCTACATCAT- 3′ and 5′-GGGTCT
ACCTGGAGCCTAGC- 3′.

Electron microscopy
Ultrastructural analysis of dLGN was carried out as
previously reported [5]. Mice (P21-22) were deeply
anesthetized with isoflurane vapors and perfused
transcardially with 2 % PFA/2 % glutaraldehyde in
0.1 M phosphate buffer solution. Brains were excised
and cut on a coronal plane (50–100 μm thick) using
a Vibratome (Leica VT100E). Sections were postfixed
in 2 % osmium tetroxide, dehydrated in a graded
series of ethyl alcohol and then were embedded in
Durcupan resin. Ultrathin sections (70 nm) were cut,
collected on Formvar-coated nickel slot grids and
then were stained to reveal the presence of gamma
amino butyric acid (GABA), using a polyclonal,

affinity-purified rabbit anti-GABA primary antibody
(cat. no. A2052, Sigma, St. Louis, MO) diluted
1:2,000, and a goat anti-rabbit IgG antibody conju-
gated to 15-nm colloidal gold particles diluted 1:25
(British BioCell International, Cardiff, UK). The sec-
tions were then stained with uranyl acetate and ex-
amined using a Philips CM10 electron microscope.
Images of math5−/− tissue (n = 20, P22) and WT tis-
sue (n = 20, P21) were collected with a digitizing
camera (SIA-7C; SIA, Duluth, GA). In each sample
of images, all nonGABAergic terminal profiles were
measured using the SIA software.
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