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Abstract. We studied regenerating bilayered tissue toroids dissected from
Hydra vulgaris polyps and relate our macroscopic observations to the dynamics
of force-generating mesoscopic cytoskeletal structures. Tissue fragments
undergo a specific toroid–spheroid folding process leading to complete
regeneration towards a new organism. The time scale of folding is too fast for
biochemical signalling or morphogenetic gradients, which forced us to assume
purely mechanical self-organization. The initial pattern selection dynamics was
studied by embedding toroids into hydro-gels, allowing us to observe the
deformation modes over longer periods of time. We found increasing mechanical
fluctuations which break the toroidal symmetry, and discuss the evolution of their
power spectra for various gel stiffnesses. Our observations are related to single-
cell studies which explain the mechanical feasibility of the folding process. In
addition, we observed switching of cells from a tissue bound to a migrating
state after folding failure as well as in tissue injury. We found a supra-cellular
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actin ring assembled along the toroid’s inner edge. Its contraction can lead to the
observed folding dynamics as we could confirm by finite element simulations.
This actin ring in the inner cell layer is assembled by myosin-driven length
fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer.
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1. Introduction

Regeneration and growth of tissues have been investigated mainly on two scales, the
macroscopic one, where the tissue is considered as a piece of continuous material, and the
molecular one, where tissue dynamics is reduced to biochemical signalling. The impressive
recent results of cellular and molecular biophysics, however, have revealed a surprising
complexity of the cytoskeletal dynamics. The question of what this complexity is required for
may be partially answered by the living conditions of cells in a collective environment. However,
the findings about single cells have been integrated into the picture only rudimentarily so far.
We try to close the gap and investigate physical phenomena at a mesoscopic level by combining
a minimum of sub-cellular and molecular structures with a coarse-grained description, e.g. as a
solid or fluid, in order to explain our experimental findings. However, this field is still in its very
infancy and many questions remain to be investigated.

Our multi-cellular system of choice is the cnidarian Hydra vulgaris. It displays a simple
and uniform morphology (see figure 1(a)) and possesses only a small number of cell types.
In contrast to many other multi-cellular organisms, signs of ageing could not be stated, so
‘eternal life’ was accorded to this organism [1]. Its reproduction and regeneration capabilities
are stunning: Hydra cell assemblies and fragments prove to survive and even regenerate
completely. The absence of tissue degradation and decomposition avoids misleading results.
These properties, together with fast proliferation, render Hydra an ideal model organism for
research on bio-mechanics and pattern formation in tissues.

Hydra inspired Alan Turing [5] to his seminal reaction–diffusion principle and, indeed,
numerous grafting experiments [2–4] could be interpreted by postulating local activator and
global inhibitor gradients, as proposed by him and elaborated by Gierer and Meinhardt [6, 7].
Despite great success (e.g. explanation of the existence of a minimal tissue size for
regeneration), the gradient-forming molecules have still not been clearly identified [8]. Further,
a diffusion mechanism across or outside of the tissue as required for building such gradients
would hardly be precise and stable enough to control the observed patterning. Unfortunately,
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Figure 1. (a) Cross-section of a Hydra polyp with two buds. Hydra consists of
two cell layers, the gastrodermis and the epidermis (also called the endoderm
and the ectoderm), attached to an extracellular matrix called mesoglea. The
polyp forms a tube of which one end is surrounded by 7–12 tentacles with the
hypostome (mouth) in the centre while the other end (basal disc) is used to attach
to surfaces. (b) Tissue fragments and cellular aggregates of different geometries
first transform into the universal spheroidal geometry prior to the regeneration of
a new polyp. (c) Hydra possesses two different isoforms of actin: α-actin which
can build up super-cellular structures and β-actin which becomes particularly
prominent when the cell starts migrating out of the tissue collective (modified
from [12]).

Turing did not take into account any cell-mechanical aspects, although regenerating Hydra
tissues, as well as other tissues, show distinct active mechanical movements. As a conclusion,
we hypothesize that forces and movements are a crucial component for a stable regeneration of
the organism.

It was shown that mechanical stress—under certain conditions—influences the chemical
state of cells, e.g. β-catenin increases significantly on compression. Furthermore, β-catenin
influences not only the regulation of the cytoskeleton but also the expression of genes well
known from development and cancer [9–11]. However, the link to tissue fluctuations and
movements is still to be explored.

Single cells revealed singular material properties, partially due to their highly dynamic
polymer networks. The cytoskeleton built out of these polymers shows complex rheology
partially depending on the mechanical past of the cell [13, 14]. This can now theoretically be
captured [15–17]. Furthermore, the cell reacts specifically to mechanical stress with softening
or stiffening dependent on the entanglement of the fibres and the time scale of observation
(‘stiffening–softening paradox’) [18–20].

In most healthy grown tissues, cells usually neither strongly change shape nor migrate.
However, it has been stated that tissue grafts lead to increased local cell motility [21] (epithelial
mesenchymal transition (EMT)) and developmental gene activation (Wnt) [22] in Hydra
organisms. In regenerating tissues cells equally show increased motility and Wnt-activity similar
to single cells [23, 24]. It is plausible that this developmental gene may be related to cell motility
and healing. Its relation to our findings remains to be studied.

What determines the large-scale ordering during regeneration and development? One
mechanism was found by Holtfreter [25], who investigated embryonic tissues and suggested
cell–cell affinity as a sorting mechanism. Foty and Steinberg showed the direct dependence of
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surface tension on adhesion strength between cells in cellular aggregates (‘differential adhesion
hypothesis’) analogous to demixing of immiscible fluids [26, 27]. Cell assemblies represent
a unique material being able to switch between being fluid-like, solid-like or a material with
mixed properties. Hydra tissues, as studied here, are extracted from adult animals and possess an
extracellular matrix and stable inter-cellular junctions. In contrast to embryonic cell assemblies
they rather behave like a soft solid material.

Fluctuations during Hydra regeneration have been investigated only rudimentarily so
far [28–30] and only a few publications discuss fluctuations during morphogenesis for other
species [31, 32]. It was found that tissue fragments and cellular aggregates always rearrange
to spheroids (figure 1(b)). These spheroids show three phases of sawtooth-like semi-periodic
fluctuations [28], which were found to be related to the expression pattern of a gene associated
with the mechanical axis formation [33]. Fluctuations may be directly coupled to gene
expression; however, many open questions remain.

In order to measure macroscopic shape changes with a high signal-to-noise ratio,
fluorescent cells have been observed. Therefore, we used strains with eGFP (enhanced green
fluorescent protein) being co-expressed along with β-actin in the epidermal as well as in the
gastrodermal cells, and we studied them by confocal microscopy. As this β-actin was generally
found to be uniformly expressed in our tissues, we used the variations in fluorescence intensity
as an indicator of the deviation from the focal plane caused by tissue deformation.

Hydra cells also possess myoneme-like, force-generating actin structures (we assume
α-actin) whereas cortical β-actin is rather involved in the control of stiffness and shape.
Both systems are stabilized and dynamically restructured by motor proteins (myosins) and
crosslinkers (e.g. actinin) [12]. However, we ignore the molecular scale, but concentrate our
discussion on the principal functional subsystems: the mesoscopic filamentous structures called
‘F-actin bundles/myonemes’ and the ‘β-actin’.

While we concentrate on the mechanical properties here, it is clear that the ‘big picture’
has to associate mechanics with signalling and genetic control. We expect that our findings are
of general importance for biological pattern formation and complex systems and may lead to
the unfolding of new medical approaches.

2. Folding dynamics

Fragments of different shapes were found to reshape into a spheroid in most cases. The tissue
often rejects a larger number of cells during this folding process. The passage through the
spheroidal state has been found without exception prior to the regeneration of a polyp; however,
the reason for this necessity is not clear.

In order to obtain uniform and comparable temporal regeneration dynamics, we used
toroids as an initial state (figure 2). This simple shape mimicks an infinite tissue for signal
spreading and facilitates data analysis and the building of models. The dimensions of our
toroidal cross-section are about 80 × 140µm (radial × coaxial direction) and 300µm (overall
diameter). The toroid’s wall consists of a massive inner (gastrodermis) and a shell-like outer
(epidermis) cell layer. The toroids comprise about 1500 ± 500 cells in total and for this
arrangement we found the regeneration to a small polyp to be reproducible in about 80% of
our experiments. In the remaining cases we did not observe folding. Instead the tissue just
contracted until the inner aperture was closed or the toroid disintegrated completely. In the case
of too small sections the folding still occurs but the reproduction probability of the polyp is
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Figure 2. (a)–(d) The Hydra folding process (bar: 100µm) as observed with
confocal microscopy (upper row) and as a simulation (lower row). The confocal
images show only a horizontal cross-section of the three-dimensional (3D)
structure. In the results of the simulation (discussed in section 5) the location
of the inner actin ring (toroid diameter 300µm and cross section diameter
90µm) is indicated by the increase of stress along the inner circumference of the
toroid due to myosin–actin contraction. The vertically arranged states correspond
approximately.

reduced. Below sizes of 200–300 cells the regeneration fails [34]. Too large sections do not
fold but stay tube-like and heal at both ends prior to regeneration. In that case the axis of the
organism is presumably conserved.

The folding process in 90% of our observations requires not more than (120 ± 30) s from
the planar ring shape to the folded ring. The folding was considered complete when the opposite
loops got into contact. The observed time period is clearly too short for diffusive signalling
across the toroid, especially as an appropriate control loop would need several passages of wave
fronts of signalling molecules before a gradient obtains stability. Half of the perimeter accounts
for at least 20 cells and free extra-cellular diffusion would disperse a signal in not less than
10 min to reach the opposite side [35].

During wing morphogenesis of the fruit-fly a decapentaplegic (Dpp) morphogen intra-
cellular gradient expansion speed of 6µm in 5 h (this corresponds to 3 days to cross a Hydra
toroid) has been measured [36], which is far too slow to explain Hydra toroid folding. Gene
expression would also need many hours [37–39]. A sufficient control of diffusion based on
gradients outside the tissue can hardly be imagined. In addition, the Hydra polyp lives in an
aqueous environment which would strongly perturb such gradients.

Hydra possesses a primitive neuronal system mainly concentrated in the hypostome and
peduncle region [40]. The toroids are taken from the centre of the gastric column, which is only
sparsely populated with neurons. As most of their connections are destroyed during dissection,
we assume that their contribution to the control of the folding process is at best marginal.
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Other signal paths are provided by gap junctions, prominent for cardiomyocytes but still
unknown for Hydra. They allow for a direct and extremely fast intercellular signal exchange
based on electrical potential differences driving ion flow [41]. However, an organizer such as
the sinoatrial node for the heart would be required to provide timing stability. Such a system is
unknown in Hydra and, even if it existed, would presumably be negligible in our toroids.

Osmotic pressure of the gastrodermal cells as a possible origin of contraction and
deformation can be excluded since the enteron (the inner cavity of a closed Hydra tissue) is
hyperosmotic. This would result in a cellular swelling and not a contraction once these cells are
exposed to the external medium [42].

These reasons support our conclusion that the gastrodermal cells are the force-generating
cell type. Mechanical stress-relaxation waves propagate at the speed of sound and provide
a means of very fast signal transmission. The corresponding speed v =

√
G/ρ is in the

range of about 0.1 m s−1 when assuming a shear modulus of G ≈ 100 Pa (soft cells; stiffer
cells lead to even higher velocities) and a net tissue density ρ ≈ 1 g ml−1 [43]. Mechanical
waves cross Hydra rings in milliseconds. The shear modulus is mainly controlled by the
cellular cortex, which stabilizes cellular shape against external mechanical stress and osmotic
pressure [42].

During the folding process, the gastrodermal cells in the fold are submitted to considerable
compression, leading to strong deformation. In some cases this deformation results in a local
tissue disassembly as some cells start migrating individually first, then they round up, their
β-actin related fluorescence is strongly increased and, finally, some quit the tissue. This process
resembles the EMT, which also plays a role in tumours and inflammation, for stem cells
and during embryogenesis [44–46]. To our knowledge, a purely mechanical triggering of this
transition has not been described before.

Cells remaining tissue-bound show a low, constant and uniform β-actin activity, providing
stiffness to ensure the stability of the cells and the tissue (fig 4(a)). Even for strongly deformed
cells an increase of the corresponding fluorescence intensity cannot be stated as long as the
cells remain tissue-bound. These observations agree with gene expression studies where the
β-actin signal has been found to be constant enough to serve as a reference for normalization
of gene expression measurements [47]. However, this statement has to be revised in some
cases as we observed significantly higher activity of β-actin, once the cells switch from the
‘tissue state’ to the individual migrating state. As we did only observe exclusively tissue bound
(low fluorescence) or migrating (strong fluorescence) cells, we suggest a two-state approach for
future models.

3. The actin machinery

The α-actin system of Hydra forms super-cellular bundles in the epidermis (myonemes) as well
as in the gastrodermis. They are able to span across as much as seven cells. One epidermal
cell contains about seven to ten bundles. The bundles in the two cell layers are oriented
orthogonally to each other and form a two-dimensional Cartesian coordinate system, which
allows absorption as well as generating stress in any direction. This explains the impressive
motility of the organism. The epidermal bundles are oriented coaxially to the Hydra body and
the dissected-toroid axis, and they are positioned regularly with an average distance of 3–5µm.
The gastrodermal bundles follow the contour of the toroid, with strongly varying density. We
observed strong bending and length fluctuations in both systems. The gastrodermal bundles are
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much less pronounced than the epidermal bundles and usually appear more clearly, once the
tissue is slightly stimulated mechanically.

Whereas the observed β-actin density did not display any specific dynamics during that
process either in the gastrodermis or in the epidermis. The F-actin forms bright zones prior
to the folding event. Initially, actin is scattered in the apical cortex of the irregularly shaped
gastrodermal cells. In the course of time the actin structures become denser and get aligned to
bundles (figures 4(b)–(d)). Finally, a dense and strong actin ring is formed along the inner side of
the toroid and the cell’s apical side is flattened to a smooth inner contour. This is presumably due
to increasing internal mechanical stress reducing the surface roughness. It is conceivable that the
bundling process itself is self-sustained and amplified by this stress along the curved geometry.
Simultaneous to the bundle formation, we observed a decrease in fluorescence intensity of the
cytoplasm, probably due to actin depletion.

The epidermis arches as a relatively thin layer over the outer bound of the gastrodermis,
which is much more voluminous. Due to their orientation, the epidermal α-actin bundles cannot
be directly responsible for the folding. We assume that one of their duties is rather to distribute
the stress field generated by the contracting gastrodermal bundle ring over the entire toroid. This
ensures stability and reproducibility of the described dynamics.

The epidermis covers as a relatively thin layer the voluminous gastrodermis and possesses
a system of long and equidistant epidermal bundles (figure 7). Their length was observed to
fluctuate between 10 and 80µm with rates up to 150µm min−1. Actin polymerization is clearly
too slow to yield such rates; hence, myosin is assumed to be at the origin [48]. The gastrodermal
tissue beneath is periodically compressed by these fluctuations which would explain the
observed densification and orientation of the gastrodermal actin structure. These contractile
forces are transmitted to the adjacent cell layer by the flexible and porous extracellular matrix
network [49]. The a priori highly oriented epidermal bundles presumably determine the
orientation of the gastrodermal bundles which in turn generate the mechanical stress expressed
in transversal epidermal fluctuations. The gastrodermal system was observed to regularly
fractionate again and split up between the epidermal contractions. So it is much less stable
than the epidermal one which may allow it to be more adaptive with respect to external changes
in stress and shape.

We hypothesize that the gastrodermal actin ring as seen in figures 4(b)–(d) and 6(b)–(c)
is responsible for the folding process. This is supported by observing the effect of partially
dissolving the gastrodermis by the application of cytochalasin—an actin polymerization
inhibitor. Degradation of the gastrodermis results when doses above 20µmol `−1 are applied
for 10 min. The epidermis was observed to be less prone to degradation than the gastrodermis.
In figure 3(c) it can be observed that the epidermis is significantly more curved in regions where
some gastrodermal cells are still attached to the tissue.

4. Differential contraction and toroidal symmetry breaking

In order to perform the described folding process the cylindrical symmetry of the toroid
has to be violated. Due to the contraction of the actin ring in the gastrodermis, the
whole tissue experiences an internal stress gradient (‘differential contraction’) between the
actin-ring-forming and other cells and the toroidal shape becomes unstable. Small randomly
distributed irregularities (‘critical fluctuations’) may be amplified now. As a consequence, the
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Figure 3. (a) The gastrodermal F-actin bundles are usually faint. However, if the
fast deformation leads to an internal shear stress these structures are expressed
more strongly (ends of bundles indicated by arrows). The folding axis is oriented
horizontally. (b) During folding, the actin intensity is strongly increased on the
apical side of the gastrodermal cells, indicating the contraction of this cell layer.
(c) Cytochalasin at concentrations above 20µmol `−1 destroys the gastrodermis,
whereas the epidermis seems to be more stable. Still some gastrodermal cells
(red) remain intact in this picture. The curvature of the ring is more pronounced at
that site (indicated by the arrow). This shows the crucial role of the gastrodermis
in the folding process. All scale bars represent 100µm.

Figure 4. (a) The β-actin fluorescence intensity distribution in the gastrodermis
of a projection of a partially folded (about 50%) Hydra toroid does not indicate
the axis along which the folding occurs later (the axis in yellow). Therefore, we
think that the folding axis selection is random. Panels (b)–(d) show a sequence
of gastrodermal F-actin bundle formation in a later stage of the folding process.
Initially (b), the actin is scattered over the apical sides of the cells. After about
2 1

2 min, (c) the bundle starts forming and at later times (d) it becomes straight
and dense (the folding axis in yellow). All scale bars represent 100µm.

tissue increases its curvature transversally and becomes wavy. The nature of the irregularities is
not obvious, as thermal fluctuations are negligible at this length scale. The origin of these active
fluctuations is presumably linked to the actin cytoskeleton which is known to be highly dynamic
and a source of fluctuations [17].
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Next, we attempt to relate single-cell mechanics to the described fluctuations of Hydra
tissue toroids. The mechanics of single cells under different types of external forces and strains
is currently being investigated extensively [14, 16, 50–54]. The spatial scale of these fluctuations
was found to be larger than just a single cell; therefore, it presents a collective phenomenon.

During folding, cells are deformed strongly. This can lead to disassembly of the
cytoskeletal actin crosslinkers. These crosslinkers are point-like and, therefore, concentrate
the mechanical stress field strongly, which increases rupture probability. Therefore, even small
strains (<10%) lead to an irreversible actin network rupture [14, 20]. The strain-softened cells
extend and the overall stress is relaxed. However, the disrupted cytoskeletal structure of these
cells reorganizes and stiffens slowly again after several minutes [14]. As the recovered stiffness
exceeds the stiffness of the non-softened adjacent cells as can be seen in [14], the latter are
stretched and shear-softened during a new folding trial. Therefore, repeated folding would
occur along a varying axis. Indeed, we occasionally observed toroids to unfold and refold along
different axes. Apparently, the toroids ‘check out’ if the folding was correct and repeat it on
mismatch.

Cells actively react on stress. In preliminary experiments with toroids exposed to strong
mechanical stress (2–5µN) in a mechanical stretching device, we were unable to predict the
position of rupture. α-actin was found to reinforce by bundling at the thinnest site presumably
permitting the tissue to cope with the densified mechanical stress field. The active reinforcement
of actin bundles in the gastrodermis protects the tissue from rupture.

The tissue fragment folds rapidly. When embedded in very soft agarose gel of
concentrations from 0.2 to 1% [55], the folding onset can be retarded or stopped allowing
for longer observation times. On a long term (about 1 h), we found three phases of the shape
fluctuations—first a semi-periodic phase with typical frequencies in the range of 10 mHz, then
a second phase with pulsations every few minutes and finally a silent phase. In the last phase
the tissue organization starts to disintegrate partially (EMT).

Regarding the initial fluctuations leading to instability, we observed mainly creation and
decay of stationary waves. Corresponding to the periodicity of the system we used discrete
Fourier analysis of the fluorescence intensity along the toroid with the toroidal angle as a
variable. We restricted our analysis to modes 2–15. Higher modes would account for sub-
cellular deformations, which go beyond the scope of this paper. Modes 0 and 1 correspond
to translation and rotation and, therefore, are irrelevant for the folding dynamics.

Our data are discussed only qualitatively as the described phenomena are reproducible,
although not yet numerically. Initially, several of the lowest modes (2–10) were of about equal
amplitude (see (iv) in figure 5(c)). At the time scale of several tens of minutes, all modes decayed
with the exception of the second. This mode led directly to correct folding geometry. For stiffer
gels we observed a reduction of excited modes and a slowing down of the dynamics. In an
almost liquid 0.2% gel the second mode dominated after less than 5 min; in stiffer gels it needed
significantly more time. Only in the stiffest gel (1%) the third mode was able to supersede the
second in the end (see (iii) in figure 5(b)). This mode exchange can be explained by considering
the distribution of the mechanical energy. We consider bending into the direction of the toroidal
axis only and neglect modulations in the toroid plane. The bending energy of the toroid scales for
excursion amplitudes a, which is small, like Ebend ∼ a2 n4 (n is the mode number). In the gel-less
case the energy is distributed equally among the modes according to the equipartition theorem.
Then, the lowest modes dominate since a ∼ 1/n2. In linear approximation and assuming that the
average force applied against the gel F is constant, the elastic energy of the gel is Eel ∼ F2/D
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Figure 5. Hydra tissue in low melting agarose gel with concentrations of (a)
0.4, and (b) 1%. The gel inhibits the folding process and allows the long-term
observation of the mode dynamics on the toroid. (a) Previous to the folding we
found the presence of modes 2–7 with similar amplitudes. After a few minutes
the higher modes disappear in favour of the second mode, finally leading to the
folding process. We found a cascade dissipation mechanism (i) as well as the
coupling of a number of even or odd modes (ii) reflecting even or odd mirror
symmetry. In (b) the very stiff gel results in a winning third mode (iii). No
higher modes are significant here. (c) Spectra, normalized with the initial value
of the second mode and averaged over a short interval at the indicated times, are
compared for the two gels: in the softer gel a block (2–6) of modes are of equal
strength (iv) during the symmetry breaking (25–35 min), which decay later. Only
the second mode survives and dominates finally. In stiffer gels no block could be
seen; usually the second mode dominates during the transition. The presented
case was observed in the stiffest gel: mode switching from the second to the
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Figure 5. (Continued) third was found. The polyp was not able to be regenerated
in this case. (d) A typical tissue ring with β-actin-labelled epidermis is shown
together with the sampling strip along which the intensity was extracted and
radially averaged for the Fourier analysis (bar: 100µm).

(D is the elasticity constant) and the energy created by the contraction of the actin ring increases
in time. The contraction process continuously delivers mechanical energy into the system being
distributed between the gel and the bent toroid. However, the stiffer the gel is, the less energy
it can store: Eel ∼ 1/D. Therefore, for stiffer gels the energy generated by the contraction goes
preferably into the tissue deformation. Eventually, the even second mode is not absorptive
enough anymore and the odd third mode is involved in taking over the excess energy, as the
latter can store 5 times more energy compared to the second mode at equal excursion amplitudes
(Ebend ∼ n4) and dominates and suppresses the second mode by a still unknown nonlinear mode
coupling.

The modes superior to the second one frequently decayed in a cascade through which their
energy was progressively transferred to increasingly higher modes (a typical case is shown
in (i) in figure 5(a)). This again can be explained by the better ability of higher modes to
absorb the increasing amount of mechanical energy generated by the contracting actin ring.
This might be a biological dissipation mechanism to transfer the steadily increasing energy
from macroscopic to mesoscopic and possibly microscopic length scales, i.e. to the molecular
level. The energy is completely transferred to the next higher mode, which indicates again a
nonlinear competition of modes with different symmetries. We generally observed transient
coupling of exclusively odd or even modes (a typical case is shown in (ii) in figure 5(a)). The
modes of equal symmetries collaborate and modes of mixed symmetry compete. However, an
explanation is still unavailable.

Finally, after a longer period when the folding process failed, cells round up, increase
β-actin expression, form lamellipods and start migrating individually over the remaining tissue.
We assume to have observed for the first time a purely mechanically triggered EMT.

5. Finite element simulations

In this section, we describe numerical simulations of the folding process using a 3D finite
element model. The calculation assumes quasi-equilibrium and outputs the state as a function
of the stress generated by the contractile actin ring.

In order to account for large deformations, an updated Lagrangian formulation [56]
is chosen. The deformation behaviour is modelled by an Ogden material model
of isotropic nonlinear elasticity [57–59], characterized by the free energy function
ψ(λk)=

∑n
I=1

µI

αI
(J −

αI
3 (λ

αI
1 + λαI

2 + λαI
3 )− 3)+ g(J ), with principal stretches λi , material

parameters µI and αI as well as n, the number of individual functions. The function g(J ) of the
Jacobian J = λ1λ2λ3 is used to model compressible material behaviour. Here, we use an Ogden
formulation with n = 1, α1 = 2 and g(J )=

9K
2 (J

1
3 − 1)2, which is also known as a compressible

Neo–Hooke material, where K is the bulk modulus. In the limit case of small strains this
formulation reduces to linear elastic Hooke material. Regarding the material parameters, we
chose a Young’s modulus of E = 100 Pa and a Poisson’s ratio of ν = 0.4. The Poisson’s ratio
quantifies the negative ratio of transverse and longitudinal strain in a specimen undergoing
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Figure 6. The actin ring seems to play an important role even in the already
folded ring. Slight compression significantly amplifies this otherwise only hardly
visible structure (a). The cells of the epidermis and the gastrodermis are pressed
together and after half an hour (b) the cells in contact connect, inducing the
closure of the gaps. Finally (c), the α-actin bundles start to disappear and a
perfect spherical symmetry is established (bar: 100µm). This spheroid, being
symmetric in shape and mechanical properties (actin), is the starting point
inevitable for the development of a novel organism.

uniaxial tension. The chosen number 0.4 allows for a small volume increase on extension,
meaning that the material is assumed to be slightly compressible. From those parameters
µ1 =

E
2(1+ν) and K =

E
3(1−2ν) can be calculated.

Tori with major radii of R = 150µm and varying minor radii r have been investigated.
These were discretized by hexahedral serendipity elements with quadratic shape functions [60].
The inner actin ring, assumed to be responsible for the folding process, was modelled by linear
truss elements. These are attached to the toroid along its inner circumference. To drive the
folding process an increasing intrinsic strain was prescribed to the truss elements.

Simulations showed that numerical noise is not sufficient to break the symmetry of the
toroid model. Thus, four equal additional forces distributed evenly around the toroid are applied,
forcing the toroid slightly into the experimentally observed configuration. While reducing these
additional forces back to zero, the simultaneously increasing intrinsic strain in the inner actin
ring will keep the toroid in its bended shape. A further increase of the intrinsic strain then drives
the folding. The here described process is adequate to prove the ability of the inner actin ring to
fold the toroid if the initial condition describes a sufficiently bended configuration. We suggest
that the active fluctuations described in section 4 serve to overcome this folding threshold.

Figure 2 features a toroid of 45µm minor radius modelled by 2304 hexahedral and 96 truss
elements. As the simulations show, the inner actin ring is able to fold the toroid, which proves
the viability of our hypothesis. In figure 2(d) the inner ring exhibits tensile forces between
about 50 and 150 nN. This results in a von Mises stress σV of up to about 100 Pa in the toroid.
Thicker toroids did not succeed in folding but would rather return to their plane configuration
when reducing the additional forces. This is to be expected, since for thick structures bending
becomes less favourable compared to tension. Therefore, simulated toroids with aspect ratios
r/R > 0.3 would rather tighten staying flat than deflect from their plane configuration, which
we occasionally could also observe in our experiments.
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The model is well suited to describing the observations qualitatively, whereas any
numerical quantity values should be regarded as describing the order of magnitude of effects.
Simplifications of the model are: ignoring the nature of the two cell layers as well as the
presence of the extracellular matrix (mesoglea), the other actin structures, and finally, basing
the simulation on a simple isotropic Ogden model. Furthermore, apart from the contractile actin
ring we ignored active cellular reactions which modulate cellular stiffness and shape and which
are presumably responsible for the described fluctuations.

6. Summary and conclusion

In the present paper, we studied regeneration of the cellular toroids of about 1500 Hydra vulgaris
cells. The toroid geometry has been selected as it is the simplest one after spheroids, allowing
for clean observation and analysis.

During the first phase of the regeneration process, cellular toroids composed of cells display
a highly symmetric and unusually fast folding dynamics. After 2 min a compact form is achieved
which transforms into a spheroid with a correct cellular bilayered structure.

In order to study the symmetry breaking, we embedded the toroids into gels of varying
stiffnesses and analysed the modulation dynamics by circular Fourier decomposition. For soft
gels, the second mode prevails that matches perfectly the folding geometry. For stiff gels,
we observed a dominant third mode that is capable of accommodating more bending energy
for a given amplitude. Energy transfer cascades to higher modes were also found for modes
beyond the third order. The observed phases of exclusively excited even or odd modes indicate
a symmetry-dependent interaction between modes of different order.

The subsequent folding process can be explained purely mechanically based on
‘differential contraction’: a subpopulation of cells in a tissue spontaneously contracts
collectively, which leads to stress gradients and shape modulation of the tissue. At its origin
we discovered an actin ring at the inner side of the toroid. In order to observe its creation we
observed actin in embedded toroids as well as in stretched tissue (1–10µN). The actin ring
showed in both cases growth and strengthening. As a result actin creates stress, which, in turn,
amplifies the actin structure, again presenting a self-organization process of the ring formation.

A numerical finite element model of stiff toroids with a tensile stress ring at the inner
bound confirmed the mechanism: the ring contraction destabilizes increasingly the arrangement
of the otherwise stable flat toroid. In addition, the simulation revealed properties that are not
accessible experimentally: a deformation threshold has to be crossed in order to reproduce the
observed toroid bending. The finite element simulation revealed further that the ratio between
the cross section and the major diameter had to be below a critical value to accomplish
folding. Otherwise the inner bound of the toroid only contracts without excursion into the third
dimension. These findings imply that the fluctuations responsible for the transition have to pass
a minimal amplitude in order to initiate the dynamics. We hypothesize, as thermal fluctuations
are too small at this length scale, that this is the reason why cells and groups of cells actively
consume energy to maintain strong enough fluctuations.

The folding was related to single cell dynamics. Tissue cells are put under stress by
deforming neighbouring cells. Large enough deformation stress softens the cell, which stabilizes
the folding site and reduces the folding force. The cells remain soft for several minutes after
stress release (hysteresis) before re-gaining the natural parameters again. After recovery the
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Figure 7. (a) Top view of the epidermal F-actin bundles (myonemes) which (b)
builds arches over the gastrodermal loops (bars: 100µm). The stiffness of these
bundles stabilizes while providing enough flexibility to follow the transverse and
longitudinal fluctuations due to the gastrodermal cells. The orientation of (b) is
visualized in (c).

Figure 8. The scheme shows the hypothetical control dependences of the
different actin systems. The fluctuations of the epidermal actin structure bundle
the gastrodermal actin forming a ring. As a consequence the stress is increased,
which leads to the folding process or to the transverse epidermal fluctuations
as well as the tissue contractions when embedded in gel. We speculate that
mechanical feedback (dashed lines) is responsible for synchrony and stability
of the epidermal actin fluctuations.

stiffness reinforcement was observed to overshoot the previous value [14]: this favours the tissue
to fold at different sites depending on the recovery time.

The epidermis provides equidistant F-actin stripes capable of stabilizing the large-scale
structure (figures 7(a) and (b)). We found fast longitudinal myosin-driven fluctuations. As
we found, these fluctuations bundle and reinforce the perpendicularly oriented gastrodermal
actin fibres forming the contractile actin ring. The gastrodermal layer also shows contracting
fluctuations, which, in turn, are expressed as transverse fluctuations of the epidermal actin
structure. This cross coupling of fluctuations across the mesoglea may present a mechanical
closed control loop organizing the described folding so perfectly (figure 8). In the end state of
folding, the outermost cells join until a double layered spotless spheroid is obtained. This is the
starting point of the morphogenesis of a new Hydra as described elsewhere.
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The long-term observation of tissue toroids in gels revealed a purely mechanically induced
transition to individual cellular behaviour (EMT). The tissue bound cells evade and migrate
as individuals over the remaining tissue. We also observed the inverse process (mesenchymal
epithelial transition), i.e. migrating cells penetrate the tissue again and re-integrate. The β-actin
level in the migrating state was observed to be significantly increased in contrast to the actin
fluorescense signal. The cells seem to possess two clearly distinct states. A future theoretical
model may take this into account and may be based on corresponding transition rates. However,
the phenomenon remains to be investigated more deeply.

7. Materials and methods

We cultivate four transgenic Hydra vulgaris strains with fluorescence labelled epithelial–muscle
cells either for the gastrodemis or the epidermis. Two cultures are transfected with the
F-actin-binding Lifeact peptide [61], whereas the other two cultures express eGFP with a β-actin
promoter and terminator [62] simultaneously to the functional β-actin of the cells. Therefore,
the eGFP signal quantifies the β-actin concentration. All strains are kept in crystallizing dishes
in our chemistry laboratory at temperatures of (18 ± 1) ◦C. All cultures are fed with freshly
hatched Artemia salina nauplii once a day and the medium is changed 3–5 h after feeding.
Our medium is composed of 1.0 mmol `−1 CaCl2, 0.1 mmol `−1 MgCl2, 0.03 mmol `−1 KNO3,
0.5 mmol `−1 NaHCO3 and 0.08 mmol `−1 MgSO4 in Millipore water.

The rings were obtained by dissecting the tissue from the central gastric column and
immediately transferred to a modified petri dish with a 170µm coverslip mounted over an
aperture and with a polytetrafluorethylene plate containing holes with a diameter of 1 mm. The
teflon plate suppresses parasitic convective flow carrying the Hydra rings out of the observation
field. The chamber was filled with either medium- or low-temperature melting agarose gel
(Sigma-Aldrich A0701) and all together was completely submerged in Hydra medium to avoid
osmotic and concentration changes due to evaporation.

The toroids were observed on a Leica DM IRE2 inverted microscope coupled with a Leica
TCS SP2 AOBS confocal scanner and a Leica HC PL Fluotar 10×/0.30 objective.

The toroids were made from polyps starved for 24 h and selected for healthy shape prior
to dissection. A double-blade scalpel was used to cut out the segments. With this technique,
we avoid large thickness variations due to polyp contractions. As the tissue movements are
considerable during the first 30 s the toroid had to be transferred fast to the observation platform.

The images were visualized and analysed with ImageJ 1.45s and in-house-developed
Mathematica 8.0 and MatLab R2011a scripts.

For the gastrodermal tissue degradation Cytochalasin D (Sigma-Aldrich C8273) was
applied at concentrations up to 20µmol `−1 for 10 min. The petri dish was gently shaken for
10 s before observation.

The finite element simulations were done using Marc Mentat 2010.1.0. One calculation for
the chosen resolution took about 1 h.
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[31] Koth S, Krahe M and Fütterer C 2011 Fluctuations and symmetries in biology and physics Cell News 4 41–6
[32] Solon J, Kaya-Copur A, Colombelli J and Brunner D 2009 Pulsed forces timed by a ratchet-like mechanism

drive directed tissue movement during dorsal closure Cell 137 1331–42
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