28 research outputs found

    Evaluation of the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population

    Get PDF
    Background Bowel cancer is common and is a major cause of death. Meta-analysis of randomised controlled trials estimates that screening for colorectal cancer using faecal occult blood (FOB) test reduces mortality from colorectal cancer by 16%. However, FOB testing has a low positive predictive value, with associated unnecessary cost, risk and anxiety from subsequent investigation, and is unacceptable to a proportion of the target population. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP-9) have been found to be associated with colorectal cancer, and this can be measured from a blood sample. Serum MMP-9 is potentially an accurate, low risk and cost-effective population screening tool. This study aims to evaluate the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population. Methods/Design People aged 50 to 69 years, who registered in participating general practices in the West Midlands Region, will be asked to complete a questionnaire that asks about symptoms. Respondents who describe any colorectal symptoms (except only abdominal bloating and/or anal symptoms) and are prepared to provide a blood sample for MMP9 estimation and undergo a colonoscopy (current gold standard investigation) will be recruited at GP based clinics by a research nurse. Those unfit for colonoscopy will be excluded. Colonoscopies will be undertaken in dedicated research clinics. The accuracy of MMP-9 will be assessed by comparing the MMP-9 level with the colonoscopy findings, and the combination of factors (e.g. symptoms and MMP-9 level) that best predict a diagnosis of malignancy (invasive disease or polyps) will be determined. Discussion Colorectal cancer is a major cause of morbidity and mortality. Most colorectal cancers arise from adenomas and there is a period for early detection by screening, but available tests have risks, are unacceptable to many, have high false positive rates or are expensive. This study will establish the potential of serum MMP-9 as a screening test for colorectal cancer. If it is confirmed as accurate and acceptable, this serum marker has the potential to assist with reducing the morbidity and mortality from colorectal cancer

    An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear.</p> <p>Results</p> <p>Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion.</p> <p>Conclusion</p> <p>The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.</p

    Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans.

    Get PDF
    The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F₁-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex.his work was funded by the intramural programme of the Medical Research Council via MRC programme U105663150 to J.E.W., and by support from the Biotechnology and Biological Sciences Research Council to M.J.O.W

    Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids.

    Get PDF
    Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∌5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∌10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∌2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; to M.J.O.W. and Q.Z., BBSRC Grant BB/G006865/1 to R.C.H., BB/H013849/1 to M.J., and BBSRC doctoral awards to A.S.R. and S.A.D.), the State Key Laboratory of Cognitive Neuroscience and Learning Open Research Fund (to M.J.), Jane and Aatos Erkko Foundation Fellowship (to M.J.), the Leverhulme Trust Grant (RPG-2012-567 to M.J.), and the UK Medical Research Council (Career Development Award to K.F.).This is the final published version of the article, originally published in the Journal of Neuroscience, February 11, 2015, 35(6): 2731–2746, DOI: 10.1523/JNEUROSCI.1150-14.201

    BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS.

    Get PDF
    Lipidomics increasingly describes the quantification using mass spectrometry of all lipids present in a biological sample.  As the power of lipidomics protocols increase, thousands of lipid molecular species from multiple categories can now be profiled in a single experiment.  Observed changes due to biological differences often encompass large numbers of structurally-related lipids, with these being regulated by enzymes from well-known metabolic pathways.  As lipidomics datasets increase in complexity, the interpretation of their results becomes more challenging.  BioPAN addresses this by enabling the researcher to visualise quantitative lipidomics data in the context of known biosynthetic pathways.  BioPAN provides a list of genes, which could be involved in the activation or suppression of enzymes catalysing lipid metabolism in mammalian tissues

    Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells.

    Get PDF
    Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC

    THP-1 macrophage cholesterol efflux is impaired by palmitoleate through Akt activation.

    Get PDF
    Lipoprotein lipase (LPL) is upregulated in atherosclerotic lesions and it may promote the progression of atherosclerosis, but the mechanisms behind this process are not completely understood. We previously showed that the phosphorylation of Akt within THP-1 macrophages is increased in response to the lipid hydrolysis products generated by LPL from total lipoproteins. Notably, the free fatty acid (FFA) component was responsible for this effect. In the present study, we aimed to reveal more detail as to how the FFA component may affect Akt signalling. We show that the phosphorylation of Akt within THP-1 macrophages increases with total FFA concentration and that phosphorylation is elevated up to 18 hours. We further show that specifically the palmitoleate component of the total FFA affects Akt phosphorylation. This is tied with changes to the levels of select molecular species of phosphoinositides. We further show that the total FFA component, and specifically palmitoleate, reduces apolipoprotein A-I-mediated cholesterol efflux, and that the reduction can be reversed in the presence of the Akt inhibitor MK-2206. Overall, our data support a negative role for the FFA component of lipoprotein hydrolysis products generated by LPL, by impairing macrophage cholesterol efflux via Akt activation

    A prospective study to assess the value of MMP-9 in improving the appropriateness of urgent referrals for colorectal cancer

    Get PDF
    Background Bowel cancer is common and is a major cause of death. Most people with bowel symptoms who meet the criteria for urgent referral to secondary care will not be found to have bowel cancer, and some people who are found to have cancer will have been referred routinely rather than urgently. If general practitioners could better identify people who were likely to have bowel cancer or conditions that may lead to bowel cancer, the pressure on hospital clinics may be reduced, enabling these patients to be seen more quickly. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP-9) have been found to be associated with such conditions, and this can be measured from a blood sample. This study aims to find out whether measuring MMP-9 levels could improve the appropriateness of urgent referrals for patients with bowel symptoms. Methods People aged 18 years or older referred to a colorectal clinic will be asked to complete a questionnaire about symptoms, recent injuries or chronic illnesses (these can increase the level of matrix metalloproteinases) and family history of bowel cancer. A blood sample will be taken from people who consent to take part to assess MMP-9 levels, and the results of examination at the clinic and/or investigations arising from the clinic visit will be collected from hospital records. The accuracy of MMP-9 will be assessed by comparing the MMP-9 level with the resulting diagnosis. The combination of factors (e.g. symptoms and MMP-9 level) that best predict a diagnosis of malignancy (invasive disease or polyps) will be determined. Discussion Although guidelines are in place to facilitate referrals to colorectal clinics, symptoms alone do not adequately distinguish people with malignancy from people with benign conditions. This study will establish whether MMP-9 could assist this process. If this were the case, measurement of MMP-9 levels could be used by general practitioners to assist in the identification of people who were most likely to have bowel cancer or conditions that may lead to bowel cancer, and who should, therefore, be referred most urgently to secondary car

    [Le résultat du concours Diday...]

    Get PDF
    Concours Diday 1879-1880. Résultat du concours : Albert Gos 1er prix, Ferdinand Hodler 2e prix. Les tableaux seront visibles jusqu'au 27 mai au rez-de-chaussée de l'Athénée

    CD151 regulates expression of FGFR2 in breast cancer cells via PKC-dependent pathways.

    Get PDF
    Expression of the tetraspanin CD151 is frequently upregulated in epithelial malignancies and correlates with poor prognosis. Here, we report that CD151 is involved in regulation of the expression of fibroblast growth factor receptor 2 (FGFR2). Depletion of CD151 in breast cancer cells resulted in an increased level of FGFR2. Accordingly, an inverse correlation between CD151 and FGFR2 was observed in breast cancer tissues. CD151-dependent regulation of the FGFR2 expression relies on post-transcriptional mechanisms involving HuR (also known as ELAVL1), a multifunctional RNA-binding protein, and the assembly of processing bodies (P-bodies). Depletion of CD151 correlated with inhibition of PKC, a well-established downstream target of CD151. Accordingly, the levels of dialcylglycerol species were decreased in CD151-negative cells, and inhibition of PKC resulted in the increased expression of FGFR2. Whereas expression of FGFR2 itself did not correlate with any of the clinicopathological data, we found that FGFR2-/CD151+ patients were more likely to have developed lymph node metastasis. Conversely, FGFR2-/CD151- patients demonstrated better overall survival. These results illustrate functional interdependency between CD151 complexes and FGFR2, and suggest a previously unsuspected role of CD151 in breast tumorigenesis
    corecore