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The structures of F-ATPases have been determined predominantly with mito-

chondrial enzymes, but hitherto no F-ATPase has been crystallized intact.

A high-resolution model of the bovine enzyme built up from separate sub-

structures determined by X-ray crystallography contains about 85% of the

entire complex, but it lacks a crucial region that provides a transmembrane

proton pathway involved in the generation of the rotary mechanism that

drives the synthesis of ATP. Here the isolation, characterization and cry-

stallization of an integral F-ATPase complex from the a-proteobacterium

Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases,

which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme

can only carry out the synthetic reaction. The mechanism of inhibition of its

ATP hydrolytic activity involves a z inhibitor protein, which binds to the cat-

alytic F1-domain of the enzyme. The complex that has been crystallized, and

the crystals themselves, contain the nine core proteins of the complete

F-ATPase complex plus the z inhibitor protein. The formation of crystals

depends upon the presence of bound bacterial cardiolipin and phospholipid

molecules; when they were removed, the complex failed to crystallize. The

experiments open the way to an atomic structure of an F-ATPase complex.

provided
1. Introduction
Our current knowledge of the rotary mechanism of ATP synthase is based largely

on the analysis of the structure of the enzyme from the inner membranes of mito-

chondria [1–4] coupled with ‘single-molecule’ observations of the enzyme’s

rotary mechanism conducted almost entirely on enzymes from eubacteria [5].

The F-ATPase from bovine mitochondria has been characterized by structural

analysis most extensively, and detailed structures representing almost all of its

constituent domains have been described [1–4]. They include over 25 structures

of the globular membrane extrinsic F1-catalytic domain associated with various

substrates, substrate analogues and inhibitors; the membrane extrinsic region of

the peripheral stalk, a key component of the enzyme’s stator and its mode of inter-

action with the F1-domain; and the structure of the membrane bound c-ring, a

central component of the enzyme’s rotor attached to the rest of the rotor, the cen-

tral stalk component in the F1-domain [1–4]. These high-resolution component

structures have been assembled into a mosaic high-resolution structure repre-

senting about 85% of the mitochondrial enzyme, within the constraints of a

low-resolution overall structure of the monomeric bovine complex determined

by cryo-electron microscopy [1,6]. The main missing element is the membrane

bound segment of the stator including subunit a, which interacts with the rotating

c-ring. Together the c-ring and the a-subunit provide the pathway for protons to

cross the membrane in which the enzyme operates. Proton translocation through
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the membrane is an essential element in the generation of the

rotation of the enzyme’s rotor, driven by the transmembrane

proton motive force produced by respiration or photosyn-

thesis. If the mechanism of the generation of rotation from

the proton motive force is to be understood, a detailed structure

of this region of the complex is paramount. An initial view of

this region of the enzyme has been provided by a cryo-electron

microscopy analysis of the F-ATPase from Polytomella [7].

In contrast to the extensive structural studies conducted

on the mitochondrial enzyme, rather few studies have been

carried out of the structure of the F-ATPases from eubacteria.

Their subunit compositions are somewhat simpler than those

of mitochondrial enzymes [8–10]. They contain the same or

analogous core subunits that constitute the catalytic domain,

the rotor and the stator of mitochondrial enzymes, but they

lack the six or more supernumerary membrane subunits

found in the mitochondrial enzyme, that, as far as is known,

play no role in the catalytic activity of the complex. Structures

have been described of the F1-domains of the enzymes from

Escherichia coli [11,12], Caldalkalibacillus thermarum [13] and

Bacillus PS3 [14], of the a3b3-subcomplex also from Bacillus
PS3 [15] and of isolated c-rings from the rotors of several species

[16–20]. There is also fragmentary structural information con-

cerning the peripheral stalk region of the F-ATPase from

E. coli, describing the N-terminal domain of the d-subunit

and its mode of interaction with the N-terminal region of an

a-subunit [21], and segments of the b-subunit [22–24].

Over the years, manyattempts have been made to crystallize

intact F-ATPases mainly from mitochondrial sources, as a pre-

lude to determining their structures by X-ray crystallography,

but with no success, until the work described here on the

F-ATPase from the a-proteobacterium Paracoccus denitrificans.
This organism has been proposed to have common ances-

try with mitochondria and its respiratory chain has many

similarities with mitochondrial respiratory chains [25]. Its

F-ATPase is a complex of the nine core subunits. An inhibitor

protein known as z binds to the catalytic domain to prevent

the enzyme from hydrolysing ATP [26], and it is bound to the

enzyme that has been crystallized, as described below.
2. Material and Methods
2.1. Analytical methods
Protein concentrations were measured by the bicinchoninic

method (Pierce). The ATP hydrolase activity of the F-ATPase

was measured by coupling the activity to the oxidation of

NADH monitored at 340 nm [27]. The subunit composition

of the purified F-ATPase complex was analysed by SDS-

PAGE in 12–22% polyacrylamide gradient gels. Proteins

were stained with 0.2% Coomassie blue dye or with silver.

Samples of the purified enzyme were analysed by blue native

PAGE on Bis-Tris Native PAGE 3–12% acrylamide gradient

gels (Life Technologies).

2.2. Isolation of bacterial membranes
Cells of P. denitrificans (strain PD1222; Rifr, Sper; enhanced

conjugation frequencies; host-specific modification, mþ)

were grown as described elsewhere [28]. A suspension of

the cells (200 g) in buffer (2 l) consisting of 10 mM Tris-HCl,

pH 7.4, 0.5 M sucrose and 5 mM EDTA was digested for
3 h at room temperature with lysozyme (1 g) and then centri-

fuged (15 180g, 20 min, 48C). The pellet was resuspended in

buffer containing 10 mM Tris-acetate, pH 7.4, 0.1 mM ATP

and Complete EDTA-free protease inhibitors (Roche; 1

tablet/100 ml). The suspension was treated for 30 min with

DNAse I (10 mg; 2900 U) in the presence of 5 mM MgCl2
(final concentration) and centrifuged (31 916g, 50 min, 48C).

The upper bright red-brown layer of the pellet was resus-

pensed in buffer (1 l) containing 10 mM Tris-HCl, pH 7.4

and 1 mM MgSO4, centrifuged (31 916g, 50 min, 48C), and

resuspended again in buffer containing 10 mM Tris-acetate,

pH 7.5, 10% glycerol, 1 mM ATP, 1 mM MgCl2 and Complete

EDTA-free protease inhibitor tablets (1 tablet/100 ml; protein

concentration 20–30 mg ml21). The final suspension of mem-

branes (ca 120 ml) was divided in 30 ml portions and stored

at 2808C.

2.3. Purification of the F-ATPase
Membranes from P. denitrificans (30 ml; 30 mg of protein ml21)

were diluted to a protein concentration of 10 mg ml21 in buffer

containing 50 mM bis-Tris, pH 7.4, and 750 mM aminocaproic

acid. Undecyl-b-D-maltoside was added from a 10% solution to

give a detergent : protein ratio of 1 : 1 (w:w). The suspension

was centrifuged (224 468g, 48C, 35 min), and the supernatant

was fractionated by chromatography as follows. Nickel ions

were displaced from two HisTrap HP columns (each 5 ml;

GE Healthcare) by washing first with three column volumes

each of 100 mM EDTA, and then 0.1 M CuCl2. These columns

are referred to as HisTrap HP (Cu) columns. They were

connected in series and were followed by a HisTrap (Ni)

column (5 ml; GE Healthcare) and two HiTrap Q HP columns

(each 5 ml; GE Healthcare). This train of columns was equili-

brated in buffer consisting of 50 mM Tris-HCl, pH 7.4, 1 mM

MgCl2, 10% glycerol, 0.5 mM ATP, 0.05% undecyl-b-D-

maltoside and Complete EDTA-free protease inhibitor tablets

(1 tablet : 100 ml), and then the sample of solubilized mem-

branes from P. denitrificans was applied. The columns were

washed with buffer (150 ml), and then the HisTrap HP (Cu)

and (Ni) columns were removed. The two remaining Q

HiTrap columns were eluted with a step gradient generated

by mixing the column buffer (buffer A) with increasing

amounts of the same buffer containing 0.5 M sodium chloride

(buffer B). The steps were 10, 20, 30, 37, 42, 47, 55 and 100%

of buffer B in buffer A. The F-ATPase eluted in two separate

peaks at 47% and 55% buffer B (corresponding to a salt con-

centration of 230 and 260 mM sodium chloride, respectively).

They are referred to as F-ATPases I and II, respectively. The

fractions collected from these columns were analysed by

SDS-PAGE, and those containing the purest enzyme from

each peak were pooled separately (total volume of each

20 ml), and concentrated by centrifugation (2939g; 58C)

through a Vivaspin 20 ultrafiltration concentrator (molecu-

lar weight cut off 100 kDa; Sartorius Stedim Biotech).

The concentrates (500 ml; protein concentration 30 mg ml21)

were applied separately to a Superose 6 gel filtration column

(10 � 300 mm; GE Healthcare) equilibrated in buffer contain-

ing 50 mM Tris-HCl, pH 7.4, 1 mM MgCl2, 10% glycerol,

0.5 mM ATP, 0.05% undecyl-b-D-maltoside (w/v) and

Complete EDTA-free protease inhibitor tablets (1 tablet :

100 ml). The flow rate of the buffer was 0.5 ml min21, and

the fractions containing the purest F-ATPases I and II were

identified by SDS-PAGE, pooled (total volume 2 ml) and
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concentrated by ultrafiltration as above (final volume of

200 ml; protein concentration 15 mg ml21).

2.4. Crystallization of the F-ATPase from Paracoccus
denitrificans

F-ATPases I and II (each 15 mg ml21) in 50 mM Tris-HCl, pH

7.4, 1 mM MgCl2, 10% glycerol, 0.5 mM ATP, 0.05% undecyl-

b-D-maltoside and Complete EDTA-free protease inhibitor

tablets (1 tablet : 100 ml) were mixed with an equal volume

of buffer, consisting of 50 mM Tris-HCl, pH 8.0, 70–100 mM

MgCl2 and 18–20% polyethylene glycol 4000. Sitting drops

(1 ml) were formed in 96-well MRC plates (Swissci, Zug, Swit-

zerland) for growth of crystals by vapour diffusion. Crystals

formed from F-ATPase I only, and they were grown for

20 days at 258C. Twenty crystals were harvested individually,

each on a micromount. Each crystal was dipped sequentially,

for 10 s for each dip, into three portions of buffer with the

same composition as the mother liquor. These crystals were

pooled and their protein contents were analysed by SDS-

PAGE. Other crystals were harvested with micromounts

(Mitegen, Ithaca, NY, USA) and cryoprotected by transfer

sequentially through five drops of buffer, containing 50 mM

Tris-HCl, pH 8.0, 50 mM MgCl2, 0.1% (w:v) undecyl-b-D-

maltoside, 20% glycerol (v:v) and 19% (w:v) polyethylene

glycol 4000. They were equilibrated in each drop for 1 min,

flash-frozen in liquid nitrogen and stored at 2808C.

X-ray diffraction data were collected on an in-house Rigaku

FR-Eþ superbright X-ray source (Rigaku, Houston, TX, USA), at

the Diamond Light Source, Harwell, Oxfordshire, UK and at the

European Synchrotron Radiation Facility, Grenoble, France.

2.5. Analysis of lipids bound to F-ATPases I and II
The solvents employed for extraction and analysis of lipids

were LC-MS grade (Fisher Scientific). Standard lipids were

purchased from Avanti Polar Lipids (Alabaster, Alabama,

USA). Samples of F-ATPases I and II from P. denitrificans
(500 ml; 15 mg ml21) were exchanged into a buffer consisting of

10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM

KCl, 1 mM MgCl2, 0.5 mM ATP, 0.05% undecyl-b-D-maltoside

and 1 Complete protease inhibitor tablet per 100 ml of buffer

by passage of the enzyme through a column of Superose 6

(10 � 300 mm) equilibrated in the same buffer. Samples of

the F-ATPase (100 ml; 15 mg ml21) were diluted with 50% aqu-

eous methanol (2.9 ml), and chloroform (3 ml), and a standard

mixture of synthetic lipids containing C17-acyl groups rather

than the even numbers of carbon atoms (predominantly

C16 and C18) in the acyl groups of natural lipids (40 ml).

This sample of lipid standard contained 17 : 0-cholesterol

ester (CE; 400 ng), cholesterol-d7 (CH-d7; 1000 ng), 17 : 1/17 : 1/

17 : 1-triacylglycerol (TG; 800 ng), 17 : 0/18 : 1-diacylglycerol

(DG; 200 ng), 17 : 0-monoacylglycerol (MG; 100 ng), 17 : 0-free

fatty acid (FFA; 400 ng), 17 : 0-fatty acyl coenzyme A (FaCoA;

100 ng), 17 : 0-fatty acyl carnitine (FaCN; 50 ng), 17 : 0/18 : 1-

phosphatidic acid (PA; 50 ng), 17 : 0/18 : 1-phosphatidyl-

choline (PC; 400 ng), 17 : 0/18 : 1-phosphatidylethanolamine

(PE; 200 ng), 17 : 0/18 : 1-phosphatidylglycerol (PG; 50 ng),

17 : 0/20 : 4-phosphatidylinositol (PI; 400 ng), 17 : 0/18 : 1-

phosphatidylserine (PS; 200 ng), 14 : 0/14 : 0/14 : 0/14 : 0-

cardiolipin (CL; 200 ng), C17-platelet-activating factor

(PAF; 50 ng), C17-2-lysoplatelet-activating factor (LysoPAF;
50 ng), 17 : 0-2-lysophosphatidic acid (LPA; 50 ng), 17 :

0-2-lysophosphatidylcholine (LPC; 100 ng), 17 : 1-2-lysophos-

phatidylethanolamine (LPE; 100 ng), 17 : 12-lysophosphati-

dylglycerol (LPG; 50 ng), 17 : 1-2-lysophosphatidylinositol

(LPI; 100 ng), 17 : 1-2-lysophosphatidylserine (LPS; 50 ng),

C17-ceramide (Cer; 50 ng), C17-sphingosine (SG; 50 ng), 12 :

0-ceramide-1-phosphate (Cer1P; 50 ng), C17-sphingosine-1-

phosphate (S1P; 50 ng), C17-sphingomyelin (SM; 400 ng),

C17-sphingosine-1-phosphocholine (S1P; 50 ng) and C17-

monosulfogalatosyl ceramide (Sul-Gal-Cer; 50 ng). This mix-

ture was subjected to Folch extraction [29]. The lower phase

was recovered, and the upper aqueous phase was re-extracted

with chloroform : methanol : water; (2 : 1 : 1, by vol; 3 ml), the

same composition as the lower phase. The combined lower

phase extracts were evaporated in vacuo at 188C and re-

dissolved in chloroform (70 ml). Samples (7 ml) were analysed

by LC/MS/MS with both positive and negative electrospray

ionization. Lipids were fractionated on a normal phase silica

gel column (2.1 � 150 mm, particle size 4 mm; MicroSolv

Technology, Eatontown, NJ, USA) with a ternary gradient of

solvents. The column was mounted in a Prominence high

performance liquid chromatograph (Shimadzu). It was

equilibrated with a 3 : 1 mixture of hexane and chloro-

form (v:v) and eluted with a gradient of solvent B consisting

of dichloromethane : chloroform : methanol (45 : 45 : 10, by

vol) containing 0.08% ethylamine (v:v), followed by a gra-

dient from solvent B to solvent C, consisting of chloroform :

methanol : acetonitrile : water (30 : 30 : 30 : 10, by vol) contain-

ing 0.12% ethylamine (v:v). The column eluent was

supplemented with ca 10% (v/v) 20 mM ammonium formate

in 50% aqueous methanol during the gradient from solvents

B to C. It was directed into a Thermo Orbitrap Elite mass

spectrometer (Thermo Fisher) operated in single ion monitor-

ing scan mode as described previously [30,31]. Selected ions

were fragmented by collision-induced dissociation in the ion

trap. The naturally occurring lipids originating from the

samples of F-ATPase were identified by reference to the syn-

thetic standards, and quantitated from the peak areas in the

ion current traces.
2.6. Mass spectrometric analysis of subunits of
F-ATPase I

Stained bands containing the subunits of the P. denitrificans
F-ATPase I were analysed by mass fingerprinting and tandem

MS analysis of tryptic peptides in a 4800þ MALDI-TOF–TOF

mass spectrometer (Applied Biosystems, Foster City, CA,

USA) and a Thermo Orbitrap XL electron transfer dissociation

instrument (Thermo Scientific, Waltham, MA, USA). In the

case of the a-subunit, additional experiments were conducted

on a chymotrypic digest. The masses of peptides and their

partial sequences obtained by collision-induced dissociation of

peptide ions were compared via MASCOT (Matrix Sciences,

London, UK) with a protein sequence database of the National

Center for Biotechnology Information and against a local protein

sequence database [32]. The subunits of F-ATPase I from

P. denitrificans were fractionated by reverse-phase chromato-

graphy as described before [33], and the eluate was introduced

‘online’ via an electrospray interface into a Q-Trap 4000 mass

spectrometer (ABSciex). The instrument was operated in MS

mode and was calibrated with a mixture of myoglobin and
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Figure 1. Purification and characterization of the F-ATPase from P. denitrificans. (a) Anion exchange chromatographic fractionation on two tandem Q HiTrap HP
columns of initial membrane extract produced in the presence of undecyl-b-D-maltoside. The proteins were eluted with a step gradient of increasing concentrations
of sodium chloride monitored via the conductivity of the eluent (dotted line). The absorbance of the eluate was monitored at 280 nm (solid line). (b) Analysis by
SDS-PAGE of proteins in peaks b – m in (a). Lane a is a marker of partially purified F-ATPase from P. denitrificans. The likely positions of subunits of the enzyme are
indicated on the left. (c) Gel filtration of partially purified P. denitrificans F-ATPase from peaks i (solid lane, F-ATPase I) and peak k (dashed line, F-ATPase II) from
(a). The absorbance of the eluate was monitored at 280 nm and fractions of 0.5 ml were collected. (d ) Analysis by SDS-PAGE of fractions a – l from the solid line
sample of (c); on the right is shown 10 mg of the pooled and concentrated fractions c – e. The positions of subunits of the enzyme as determined by mass mapping
of tryptic peptides are indicated on the left for the fractions and on the right for the final F-ATPase. (e) Analysis by BN-PAGE of the purified F-ATPase I on the left
and F-ATPase II on the right.
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trypsinogen [33]. Molecular masses were calculated with

MASSLYNX (Waters) and BIOANALYST (ABSciex).
3. Results
3.1. Purification of the F-ATPase from Paracoccus

denitrificans
The F-ATPase was extracted from cellular membranes of

P. denitrificans with undecyl-b-D-maltoside. Initially, attempts

were made to bind the enzyme to a HisTrap column with

bound nickel, and to a second HisTrap column, where the

bound nickel had been displaced by cupric ions. Previously,

a similar approach had been used successfully in the purifi-

cation of the F-ATPase from the bacterium Caldoalkalibacillus
thermarum strain TA2 [34]. However, the P. denitrificans
F-ATPase did not bind to either column, but several contami-

nants were removed, and so both columns were retained in

the purification process. The material emerging from these

columns was fractioned by chromatography on a strong

anion exchanger provided by a Q HiTrap column, which

was developed with a step gradient of increasing salt
concentration. The F-ATPase eluted in two separate but con-

secutive peaks (F-ATPases I and II, respectively; peaks l and

k in figure 1a and b). Subsequently, F-ATPases I and II were

treated separately. They were both purified further by gel fil-

tration chromatography (figure 1c). The yields of F-ATPase I

and of F-ATPase II were 3 mg and 2 mg, respectively, from

25 g of wet cells. Analysis on SDS-PAGE gels demonstrated

that both F-ATPases I and II contained the nine constituent sub-

units of the enzyme (a, b, g, d, 1, b, b’, a and c) plus the z

inhibitor protein (figure 1d), and after concentration on a mem-

brane, which removed many of the minor contaminants, the

preparations were free from any significant contaminants

(exemplified by F-ATPase I in figure 1d, extreme right lane).

Both F-ATPases I and II gave a single band on BN-PAGE gels

(figure 1e).
3.2. Crystallization of F-ATPase I
Samples of F-ATPases I and II were set up for crystallization

under identical conditions. However, crystals formed from

F-ATPase I only, and none was obtained from F-ATPase II.

They grew to their maximum size in about 20 days. They

formed cubes with approximately 50 mm sides (figure 2a),
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and the crystals contained all of the subunits of the enzyme,

plus the z inhibitor protein (figure 2b). These crystals

diffracted X-rays to a resolution of 6.8 Å (figure 2c).

3.3. Composition of lipids bound to F-ATPases I and II
In order to investigate the differences in the ability of

F-ATPases I and II to crystallize, the compositions of bound

lipids were examined by quantitative measurement. These

analyses demonstrated that both complexes had similar

amounts of associated monoacylglycerol and diacylglycerol,

but F-ATPase I had much more associated cardiolipin

(almost six molecules per F-ATPase I as opposed to 2.5 mol-

ecules per F-ATPase II), and similarly F-ATPase I had about

twice as much associated phosphatidylethanolamine and

phosphatidylglycerol, albeit at significantly lower levels than

cardiolipin (figure 3 and electronic supplementary material,

figure S1). Therefore, the ability of the F-ATPase from

P. denitrificans to form crystals appears to be dependent upon

the retention of native lipids from the bacterial membrane.

3.4. Subunit composition of F-ATPase I
The subunit composition of F-ATPase I was analysed by mass

spectrometry. By mass mapping and sequencing of the tryp-

tic peptides from digests of the bands detected on SDS-PAGE

gels, evidence was found for all nine of the expected consti-

tuent proteins of the F-ATPase, plus the P. denitrificans
F-ATPase inhibitor protein, z (figure 1d and electronic sup-

plementary material, table S1). In the case of the a-subunit,

additional mass mapping of chymotryptic peptides was per-

formed in order to increase the percentage coverage of the

sequence of the protein from the constituent peptides (elec-

tronic supplementary material, table S1). The subunits were

also fractionated by chromatography and their intact protein

masses were measured (table 1). These experiments demon-

strated that, with the exception of subunits d, c, b and b’,

the translational initiator formyl methionine residues had

been removed post-translationally from the subunits and

from the z inhibitor protein, and that in each instance, residue

2 provides the N-terminal residue of the mature protein. In

the d-subunit, either residues 1–3 or 1–26 were absent from

the mature protein (table 1). In the case of the b-subunit
residues 1–17 are removed, and for the b’-subunit no evi-

dence was found for the presence of the full-length protein

in the purified enzyme (mass 22388.3). However, based on

reported interpretations of DNA sequences in databases,

protein masses were observed that evidently correspond to

truncated forms of the b’-subunit lacking residues 1–39,

1–42 and 1–43 (in relative abundances of 50, 35 and 15%,

respectively). Two possibilities were considered, namely

that the N-terminal region of the b’-subunit encoded in the

corresponding gene had been removed by proteolysis, or

that the initiator methionine residues for the gene for the

b’-subunit had been mis-identified. In bacteria, the codon

GTG can encode a formylmethionine translational initiator

residue [10,35], and a plausible GTG initiation codon that

gives a b’-subunit starting two residues before the longest

version of the mature protein was identified (see the elec-

tronic supplementary material, figures S2 and S3). Thus,

this codon may define the start of the coding region for the

b’-subunit, which would therefore be 178 residues long,

and according to this re-interpretation, two, five and six

residues would be removed post-translationally from the

N-terminus of subunit b’. However, this proposal is not

yet established definitively. Mature b’-subunits have been

defined in only two other F-ATPases, those from spinach



Table 1. The masses of the subunits of the F-ATPase from P. denitrificans and of the inhibitor protein z.

subunit observed (Da) calculated (Da)a D (Da) modification

a 54 913.0 54 907.9 þ5.1 2N-fMet

b 50 211.8 50 208.2 þ3.6 2N-fMet

g 31 469.5 31 467.9 þ1.6 2N-fMet

d 19 694.8 19 694.4 0 D1 – 3 or D1 – 26b

1 15 692.9 15 692.7 0 2N-fMet

z 11 537.8 11 537.8 0 2N-fMet

a 26 593.7 26 592.8 0 2N-fMet

b 18 392.1 20 162.2 21770.1 D1 – 17

b’ (3 – 176) 18 454.9 18 454.9 0 D1 – 2c

b’ (6 – 178) 18 255.7 18 255.7 0 D1 – 5

b’ (7 – 178) 18 140.6 18 140.6 0 D1 – 6

c 7637.4 76 10.0 þ27.4 þNa-formyl
aThe N-formyl methionine translational initiator is not included in these calculated values.
bThe N-terminal sequence of the d subunit is Ala-Asn-Ser-Ala-, and the DNA sequence of the Atp operon in P. denitrificans has two possible translational
initiator methionine codons in the 50-region before the DNA sequence encoding this N-terminal sequence. Thus, the generation of the observed mature protein
would require the removal of either residues 1 – 3 or 1 – 26 from the initial product of translation.
cFor a discussion of the N-terminus of subunit b’, see the text.
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chloroplasts [36–38] and Rhodobacter capsulatus [39]. Their

sequences are aligned with the b’-subunit of P. dentrificans
in the electronic supplementary material, figure S3.

The mass spectrometric analyses also confirmed the associ-

ation of the inhibitor protein, z, with the enzyme complex.

From the peak areas from the mass spectrometric ion traces it

was estimated that the amount of the z-protein in the complex

is approximately equivalent to that of the d-subunit, consistent

with one z-protein per F-ATPase complex.
4. Discussion
4.1. Subunit compositions of eubacterial F-ATPases
Among the F-ATPases, those from eubacterial sources have the

simplest subunit compositions, and the enzyme from E. coli, for

example, is an assembly of eight different proteins [8,10]. Five

of them, subunits a, b, g, d and 1, form the F1-catalytic domain

with the stoichiometry 3 : 3 : 1 : 1 : 1, respectively [9]. Subunitsa

and b are arranged in a spherical a3b3-domain where catalysis

occurs. Subunits g and 1 constitute the central stalk that pene-

trates into the a3b3-domain along its central axis, and together

with a ring of c-subunits in the membrane domain of the

enzyme they constitute the rotor of the enzyme. The number

of c-subunits in the ring differs among eubacterial enzymes

from 9 to 15 [16–20,40]. The role of the rotor during ATP syn-

thesis is to transmit energy provided by the transmembrane

proton motive force into the catalytic sites, to allow ATP to

form. The d-subunit binds to the ‘top’ of the a3b3-domain,

and interacts with two identical b-subunits, which form an

elongated a-helical structure, known as the peripheral stalk

[41], connecting the a3b3-domain to the single a-protein in

the membrane domain of the enzyme. The ensemble of

the a3b3-domain, the d-subunit, the two b-subunits and the

a-subunit constitute the enzyme’s stator against which the

rotor turns. Subunit a is in intimate contact with the rotating
c-ring, and together they provide a transmembrane pathway

for protons. The subunit composition of the enzyme from

P. denitrificans differs from that of this simplest F-ATPase

only insofar as the two identical b-subunits are replaced

by two related but non-identical subunits b and b’, and the

F-ATPases in purple non-sulfur bacteria [35], cyanobacteria

[42,43] and the chloroplasts [37,44,45] have a similar subunit

composition. The F-ATPases in mitochondria have a homolo-

gous or analogous set of these ‘core’ subunits that constitute

the eubacterial enzymes, but in addition they have a number

of supernumerary subunits in their membrane domains that

appear to have no direct roles in the synthesis or hydrolysis

of ATP [1].

4.2. Inhibition of ATP hydrolysis
The F-ATPases in some eubacteria, for example E. coli, are

capable of both synthesizing and hydrolysing ATP [46].

Under aerobic conditions, they use the transmembrane

proton motive force generated by respiration to drive the syn-

thesis of ATP from ADP and phosphate, and during

anaerobiosis they reverse their action and hydrolyse ATP pro-

duced by glycolysis to generate a proton motive force. By

contrast, in other eubacteria such as C. thermarum [47], Myco-
bacterium smegmatis [48] and P. denitrificans [26] the F-ATPase

can only synthesize ATP, and the hydrolytic action is inhibited.

The mechanism (or mechanisms) of inhibition is (are) poorly

understood, but in P. denitrificans it involves the inhibitor

protein z, which is conserved throughout a-proteobacteria,

but not in other classes of eubacteria [26]. The z protein consists

mainly of four a-helices in a down–up–down–up bundle

(residues 19–42, 46–53, 66–77 and 81–103) [49]. Its N-terminal

region from residues 1–18 is unstructured in solution, and the

inhibitory activity of the protein lies within residues 1–14 [50].

It is bound to the preparation of the F-ATPase described

here, and earlier studies suggest that it will be bound to the

F1-domain in the vicinity of the C-terminal regions of
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the a- and b-subunits, but its precise mode of binding and

mechanism of inhibition are not known.
sob.royalsocietypublishing.org
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4.3. Crystallization of intact F-ATPases
F-ATPases have been purified by affinity chromatography

from the mitochondria of a wide range of species [51–53],

and these enzyme preparations are available in sufficient

quantities to sustain the exploration of a wide range of

conditions that might lead to the formation of crystals suit-

able for X-ray crystallographic studies. However, despite

extensive efforts, no such crystals have been obtained hitherto

with the bovine enzyme and with fungal enzymes from two

species. Thus, the successful crystallization of the enzyme

from P. denitrificans may provide practical indications of

why these experiments failed, and how future experiments

might be conducted more effectively. The present exper-

iments also suggest that identification of the key factors that

led to success in the current experiments could help in the

crystallization of F-ATPases from other bacterial species.

The first factor is that, according to the analytical criteria

that were applied, the P. denitrificans enzyme appears to be

free from other protein components of the bacterial mem-

branes from which it originated. Only authentic subunits of

the enzyme were detected in the final purified product

(figure 1d, extreme right lane), and the enzyme complex was

entirely monomeric (figure 1e). Similar comments can be

made about the chemical purity of the subunit composition

of the various mitochondrial F-ATPases that have been

described. However, it is now apparent that some of the

‘supernumerary’ membrane subunits found in mitochondrial

enzymes can be lost, wholly or partially, during purifica-

tion, leading to inhomogeneity in subunit composition of the

purified enzyme [53]. An additional complicating factor is

that, in the inner membranes of mitochondria, the F-ATPases

are organized in dimers [54] and larger oligomeric structures,

and the purified enzymes, although predominantly mono-

meric, may aggregate forming mixtures of monomeric and

oligomeric forms.

Another striking feature that has emerged from the current

investigations is that the crystallized enzyme has substantial

amounts of bound endogenous lipids, and especially cardio-

lipin, and when the enzyme was prepared with lower

amounts of bound lipids, then that preparation failed to pro-

duce protein crystals. The requirement for the presence of

cardiolipin in order for preparations of F-ATPases to retain

their membrane-associated activities is well known [55–57],

and the structural roles of bound cardiolipin molecules in

other respiratory complexes are well established [58–61]. In

the case of the F-ATPase, it is possible that in addition to a poss-

ible structural role in stabilizing the complex, cardiolipin has a

functional role and that its net two negative charges contribute
to the proton exit pathway in the interface between the c-ring

and subunit a [62].

One concern is that in consequence of its structural asym-

metry in the peripheral stalk, for example, coupled with the

structural asymmetry of the F1-domain, F-ATPases will con-

tain a population of different structural isomers, and the

presence of these isomers will impede or prevent the for-

mation of crystals. There is no doubt that these isomers

exist, as cryo-electron microscopy investigations of F-ATPases

are demonstrating. However, the bovine F1-ATPase in com-

plex with the membrane extrinsic region of the peripheral

stalk also is presumably a mixture of structural isomers

depending on how the peripheral stalk is aligned with the

asymmetric surface of the F1-domain. Yet, the complex was

crystallized, and a unique structure was determined by

X-ray analysis [63]. Therefore, it appears from this earlier

and present work that in each case one particular structural

isomer dominates, or is particularly amenable to formation

of crystals. These crystals potentially provide a route to defin-

ing the molecular structure of the enzyme at atomic

resolution. However, the structure of that isomer may be a

low energy state, and the understanding of the details of

how this intricate machine works may depend on defining

other conformational states. Here, cryo-electron microscopy

is likely to provide a solution as the analysis of F-ATPase

dimer from Polytomella indicates [7]. However, the level of

structural detail that can be attained at the moment by

cryo-electron microscopy, with such a flexible structure as

the F-ATPase, is unlikely to surpass what can be attained

by X-ray analysis of suitably diffracting crystals.

In recent work, crystals grown under similar conditions to

those described above have allowed the structure of the intact

F-ATPase from P. denitrificans to be solved by X-ray crystallo-

graphy to 4 Å resolution. This structural analysis has

demonstrated that, as expected from figure 2b, all of the

nine subunits of the enzyme plus the z inhibitor protein are

present in the crystallized complex. There are, as in other

F-ATPases, three copies of a- and b-subunits, and one copy

of each of the g-, d-, 1- and a-subunits. The peripheral stalk

contains one copy of each of the b- and b’-subunits. The stoi-

chiometry of the c-ring in the rotor domain of the enzyme,

which varies among bacterial species, is 12. In addition,

there is one z inhibitor protein bound to the F1-domain [28].
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