172 research outputs found

    The Dark Matter Problem in Light of Quantum Gravity

    Get PDF
    We show how, by considering the cumulative effect of tiny quantum gravitational fluctuations over very large distances, it may be possible to: (aa) reconcile nucleosynthesis bounds on the density parameter of the Universe with the predictions of inflationary cosmology, and (bb) reproduce the inferred variation of the density parameter with distance. Our calculation can be interpreted as a computation of the contribution of quantum gravitational degrees of freedom to the (local) energy density of the Universe.Comment: 13 pages, LaTeX, (3 figues, not included

    The Effect of Use and Access on Citations

    Full text link
    It has been shown (S. Lawrence, 2001, Nature, 411, 521) that journal articles which have been posted without charge on the internet are more heavily cited than those which have not been. Using data from the NASA Astrophysics Data System (ads.harvard.edu) and from the ArXiv e-print archive at Cornell University (arXiv.org) we examine the causes of this effect.Comment: Accepted for publication in Information Processing & Management, special issue on scientometric

    The functional neuroimaging correlates of psychogenic versus organic dystonia

    Get PDF
    The neurobiological basis of psychogenic movement disorders remains poorly understood and the management of these conditions difficult. Functional neuroimaging studies have provided some insight into the pathophysiology of disorders implicating particularly the prefrontal cortex, but there are no studies on psychogenic dystonia, and comparisons with findings in organic counterparts are rare. To understand the pathophysiology of these disorders better, we compared the similarities and differences in functional neuroimaging of patients with psychogenic dystonia and genetically determined dystonia, and tested hypotheses on the role of the prefrontal cortex in functional neurological disorders. Patients with psychogenic (n = 6) or organic (n = 5, DYT1 gene mutation positive) dystonia of the right leg, and matched healthy control subjects (n = 6) underwent positron emission tomography of regional cerebral blood flow. Participants were studied during rest, during fixed posturing of the right leg and during paced ankle movements. Continuous surface electromyography and footplate manometry monitored task performance. Averaging regional cerebral blood flow across all tasks, the organic dystonia group showed abnormal increases in the primary motor cortex and thalamus compared with controls, with decreases in the cerebellum. In contrast, the psychogenic dystonia group showed the opposite pattern, with abnormally increased blood flow in the cerebellum and basal ganglia, with decreases in the primary motor cortex. Comparing organic dystonia with psychogenic dystonia revealed significantly greater regional blood flow in the primary motor cortex, whereas psychogenic dystonia was associated with significantly greater blood flow in the cerebellum and basal ganglia (all P < 0.05, family-wise whole-brain corrected). Group × task interactions were also examined. During movement, compared with rest, there was abnormal activation in the right dorsolateral prefrontal cortex that was common to both organic and psychogenic dystonia groups (compared with control subjects, P < 0.05, family-wise small-volume correction). These data show a cortical-subcortical differentiation between organic and psychogenic dystonia in terms of regional blood flow, both at rest and during active motor tasks. The pathological prefrontal cortical activation was confirmed in, but was not specific to, psychogenic dystonia. This suggests that psychogenic and organic dystonia have different cortical and subcortical pathophysiology, while a derangement in mechanisms of motor attention may be a feature of both condition

    The functional neuroimaging correlates of psychogenic versus organic dystonia

    Get PDF
    The neurobiological basis of psychogenic movement disorders remains poorly understood and the management of these conditions difficult. Functional neuroimaging studies have provided some insight into the pathophysiology of disorders implicating particularly the prefrontal cortex, but there are no studies on psychogenic dystonia, and comparisons with findings in organic counterparts are rare. To understand the pathophysiology of these disorders better, we compared the similarities and differences in functional neuroimaging of patients with psychogenic dystonia and genetically determined dystonia, and tested hypotheses on the role of the prefrontal cortex in functional neurological disorders. Patients with psychogenic (n = 6) or organic (n = 5, DYT1 gene mutation positive) dystonia of the right leg, and matched healthy control subjects (n = 6) underwent positron emission tomography of regional cerebral blood flow. Participants were studied during rest, during fixed posturing of the right leg and during paced ankle movements. Continuous surface electromyography and footplate manometry monitored task performance. Averaging regional cerebral blood flow across all tasks, the organic dystonia group showed abnormal increases in the primary motor cortex and thalamus compared with controls, with decreases in the cerebellum. In contrast, the psychogenic dystonia group showed the opposite pattern, with abnormally increased blood flow in the cerebellum and basal ganglia, with decreases in the primary motor cortex. Comparing organic dystonia with psychogenic dystonia revealed significantly greater regional blood flow in the primary motor cortex, whereas psychogenic dystonia was associated with significantly greater blood flow in the cerebellum and basal ganglia (all P &lt; 0.05, family-wise whole-brain corrected). Group × task interactions were also examined. During movement, compared with rest, there was abnormal activation in the right dorsolateral prefrontal cortex that was common to both organic and psychogenic dystonia groups (compared with control subjects, P &lt; 0.05, family-wise small-volume correction). These data show a cortical-subcortical differentiation between organic and psychogenic dystonia in terms of regional blood flow, both at rest and during active motor tasks. The pathological prefrontal cortical activation was confirmed in, but was not specific to, psychogenic dystonia. This suggests that psychogenic and organic dystonia have different cortical and subcortical pathophysiology, while a derangement in mechanisms of motor attention may be a feature of both conditions.</p

    No proof nets for MLL with units:Proof equivalence in MLL is PSPACE-complete

    Get PDF
    [Analysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—Complexity of proof procedures Keywords linear logic, proof equivalence, proof nets, constraint logic, PSPACE-completeness MLL proof equivalence is the problem of deciding whether two proofs in multiplicative linear logic are related by a series of inference permutations. It is also known as the word problem for ∗-autonomous categories. Previous work has shown the problem to be equivalent to a rewiring problem on proof nets, which are not canonical for full MLL due to the presence of the two units. Drawing from recent work on reconfiguration problems, in this paper it is shown that MLL proof equivalence is PSPACE-complete, using a reduction from Nondeterministic Constraint Logic. An important consequence of the result is that the existence of a satisfactory notion of proof nets for MLL with units is ruled out (under current complexity assumptions). 1

    Perspectives on Astrophysics Based on Atomic, Molecular, and Optical (AMO) Techniques

    Get PDF
    About two generations ago, a large part of AMO science was dominated by experimental high energy collision studies and perturbative theoretical methods. Since then, AMO science has undergone a transition and is now dominated by quantum, ultracold, and ultrafast studies. But in the process, the field has passed over the complexity that lies between these two extremes. Most of the Universe resides in this intermediate region. We put forward that the next frontier for AMO science is to explore the AMO complexity that describes most of the Cosmos.Comment: White paper submission to the Decadal Assessment and Outlook Report on Atomic, Molecular, and Optical (AMO) Science (AMO 2020
    corecore