

Citation for published version:
Heijltjes, W & Houston, R 2014, No proof nets for MLL with units: Proof equivalence in MLL is PSPACE-
complete. in Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer Science
Logic, CSL 2014 and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2014., 50,
Association for Computing Machinery, New York , Joint Meeting of the 23rd Annual EACSL Conference on
Computer Science Logic, CSL 2014 and the 29th Annual ACM/ IEEE Symposium on Logic in Computer
Science, LICS 2014, Vienna , Austria, 14/07/14. https://doi.org/10.1145/2603088.2603126
DOI:
10.1145/2603088.2603126

Publication date:
2014

Document Version
Peer reviewed version

Link to publication

Copyright (c) ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in CSL-LICS, 2014,
http://dx.doi.org/10.1145/2603088.2603126

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161913084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2603088.2603126
https://researchportal.bath.ac.uk/en/publications/no-proof-nets-for-mll-with-units(4a7e54cf-5231-4f0d-8f3e-e8a327790a93).html

No proof nets for MLL with units
Proof equivalence in MLL is PSPACE-complete

Willem Heijltjes
University of Bath

w.b.heijltjes@bath.ac.uk

Robin Houston
Kiln Enterprises
robin@kiln.it

Categories and Subject Descriptors F.4.1 [Mathematical logic
and formal languages]: Mathematical logic—Proof theory; F.2.2
[Analysis of algorithms and problem complexity]: Nonnumerical
algorithms and problems—Complexity of proof procedures

Keywords linear logic, proof equivalence, proof nets, constraint
logic, PSPACE-completeness

Abstract
MLL proof equivalence is the problem of deciding whether two
proofs in multiplicative linear logic are related by a series of
inference permutations. It is also known as the word problem for
∗-autonomous categories. Previous work has shown the problem to
be equivalent to a rewiring problem on proof nets, which are not
canonical for full MLL due to the presence of the two units. Drawing
from recent work on reconfiguration problems, in this paper it is
shown that MLL proof equivalence is PSPACE-complete, using a
reduction from Nondeterministic Constraint Logic. An important
consequence of the result is that the existence of a satisfactory
notion of proof nets for MLL with units is ruled out (under current
complexity assumptions).

1. Introduction
The question of equivalence of proofs goes back to Lambek [19],
who realised that the new tool of category-theoretic logic gave a
notion of proof equivalence that was coarser and better-behaved
than syntactic equality.

Later, a striking technical innovation of linear logic was the
introduction of proof nets [5, 7], which define a canonical form
for proofs in the unitless fragment of multiplicative linear logic—
two proofs are equivalent if and only if they have the same proof
net—so proof nets offer a simple decision procedure for proofs
in this fragment. This naturally raises the question whether proof
nets can be extended to work in the presence of units. The work in
this direction begins with [3, 22] via [18] and perhaps culminates in
[14, 15]; but these proof nets are not canonical and must be identified
up to a rewiring equivalence.

So the question remains whether there exist fully canonical proof
nets for full MLL. Canonical proof nets have been found for several

Copyright © ACM, 2014. This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in CSL-LICS, 2014, http://dx.doi.org/10.1145/2603088.2603126.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603126

other fragments of linear logic: the combined multiplicative-additive
fragment without units [13], and the additive fragment, including
the additive units [10].

In this paper we establish that the proof equivalence problem
for multiplicative linear logic with units is PSPACE-complete. This
effectively rules out the existence of a satisfactory notion of proof
net for MLL with units—one that reduces proof equivalence to
syntactic equality, and where the translation from proofs to proof
nets and equality of proof nets are both tractable.

Constraint logic and reconfiguration problems
The proof of PSPACE-completeness relies on a polynomial re-
duction from the configuration-to-configuration problem in non-
deterministic constraint logic, a graphical formalism recently intro-
duced as a uniform tool for use in complexity reductions [6]. Con-
straint logic is a simple graph rewriting formalism, where weighted
edges may be reversed as long as the given in-flow constraint for
each vertex is satisfied; the configuration-to-configuration problem
asks whether two graphs are related by a sequence of rewriting steps.

This is one of a class of problems called reconfiguration problems
[16]: can one solution to a given problem be transformed into
another by a series of elementary changes, while remaining valid
throughout? For example, the reconfiguration problem for boolean
satisfiability (SAT) asks whether one satisfying assignment can
be transformed into another by changing the value of one atomic
formula at a time, without passing via a non-satisfying assignment. It
is not uncommon for an NP-complete problem to have an associated
reconfiguration problem that is PSPACE-complete [16]; an example
of this is SAT-reconfiguration. MLL proof equivalence may be
regarded as the reconfiguration problem associated with MLL proof
search, which is NP-complete [17, 20].

2. MLL
The formulae of unit-only multiplicative linear logic are given by
the following grammar.

A,B,C ··= ⊥ | 1 | A

&

B | A⊗B
The connectives ⊗ and

&

will be considered up to associativity, and
duality A? is via DeMorgan. A sequent Γ,∆ will be a multiset of
formulae. Within a sequent, connectives and units will be named
with distinct elements from an arbitrary set of names, e.g.

1a

&

b 1c,⊥d ⊗e ⊥f .
This allows to 1) identify occurrences of subformulae uniquely
by the name of their root connective, e.g. as Ab, 2) distinguish
the two proofs of the above sequent while using standard multiset
sequents, and 3) easily extract proof nets, as graphs using the names
of connectives as vertices. Names will often be left implicit.

Proofs are constructed from the inference rules in Figure 1,
where the names of units and connectives are preserved through

Γ
Γ,⊥

⊥
1

1
Γ, A,B

Γ, A

&

B

& Γ, A ∆, B

Γ,∆, A⊗B
⊗

Figure 1. Inference rules for unit-only MLL

Γ
Γ,⊥a

⊥

Γ,⊥a,⊥b
⊥
∼

Γ
Γ,⊥b

⊥

Γ,⊥a,⊥b
⊥

Γ, A,B

Γ, A

&

B

&

Γ, A

&

B,⊥
⊥
∼

Γ, A,B

Γ, A,B,⊥
⊥

Γ, A

&

B,⊥

&

Γ, A

Γ, A,⊥
⊥

∆, B

Γ,∆, A⊗B,⊥
⊗
∼

Γ, A ∆, B

Γ,∆, A⊗B
⊗

Γ,∆, A⊗B,⊥
⊥
∼ Γ, A

∆, B

∆, B,⊥
⊥

Γ,∆, A⊗B,⊥
⊗

Γ, A,B,C,D

Γ, A

&

B,C,D

&

Γ, A

&

B,C

&

D

& ∼
Γ, A,B,C,D

Γ, A,B,C

&

D

&

Γ, A

&

B,C

&

D

&

Γ, A ∆, B,C,D

Γ,∆, A⊗B,C,D
⊗

Γ,∆, A⊗B,C

&

D

& ∼ Γ, A

∆, B,C,D

∆, B,C

&

D

&

Γ,∆, A⊗B,C

&

D
⊗

Γ, A

∆, B,C Λ, D

∆,Λ, B,C ⊗D
⊗

Γ,∆,Λ, A⊗B,C ⊗D
⊗
∼

Γ, A ∆, B,C

Γ,∆, A⊗B,C
⊗

Λ, D

Γ,∆,Λ, A⊗B,C ⊗D
⊗

Figure 2. Permutations

inferences. Only cut-free proofs are considered, and no cut-rule is
added. Permutations of inference rules are displayed in Figure 2;
the symmetric variants of the last two permutations, par-tensor and
tensor-tensor, have been omitted.

Definition 1. Equivalence (∼) of proofs in (cut-free, unit-only)
multiplicative linear logic is the congruence generated by the
permutations given in Figure 2. MLL proof equivalence is the
problem of deciding whether two given proofs are equivalent.

The permutations of sequent proofs are exactly the identifications
imposed by the categorical semantics of MLL, star-autonomous cat-
egories [1] (and semi-star-autonomous categories [11, 12] for MLL
without units). Proof equivalence for MLL is therefore equivalent
to the word problem for star-autonomous categories: the problem
whether two term representations denote the same morphism in any
star-autonomous category.

Proof nets
Proof nets provide a solution to proof equivalence for MLL without
units. For full MLL, they reduce the proof equivalence problem to a
simple rewiring relation [15].

Definition 2. For a sequent Γ,

• a linking ` is a function from the names of⊥-subformulae to the
names of 1-subformulae,

• a switching graph for ` is an undirected graph over the names
of Γ, with for every subformula Aa ⊗c Bb the edges a c and
b c, for every subformula Aa

&

c Bb either the edge a c or
the edge b c, and for every subformula ⊥a the edge a `(a),

• a proof net ` or (Γ, `) is a linking ` such that every switching
graph is acyclic and connected.

An edge a `(a) in a proof net or switching graph is called a link or
a jump. The restriction that jumps must target 1-occurrences (rather

1∼ 1∼ 1∼

Figure 3. A rewiring sequence on proof nets

than any connective) is a convenience—it can be circumvented by
replacing a subformula A by the equivalent A⊗ 1.

Definition 3. A rewiring (
1∼) between proof nets is the redirection

of exactly one link. Equivalence (∼) of proof nets over a sequent Γ
is the equivalence generated by rewiring.

An example rewiring sequence is given in Figure 3, using the
notation for proof nets introduced below.

To translate a sequent proof to a proof net requires to find a
target for each jump from a ⊥-formula. The inference rule for ⊥
introduces it into a sequent Γ; in the corresponding proof net, any
occurrence of 1 in Γ may serve as the target of the jump.

Definition 4. The relation (Z⇒) interprets a proof Π for a sequent
∆ by a linking ` as follows: Π Z⇒ ` if for each ⊥a in ∆, if Γ is the
context of the inference introducing ⊥a, as illustrated below, then
`(a) is the name of some 1 in Γ.

Γ
Γ,⊥a

⊥

Proposition 5 ([5], [18]). If Π Z⇒ ` and Π has conclusion Γ, then
` is a proof net for Γ. For a net ` for Γ, there is a proof Π of Γ such
that Π Z⇒ ` (sequentialisation).

Proof nets are a canonical representation of proofs in the absence
of the units: they factor out the permutations among tensor- and
par-inferences, which are the last three permutations in Figure 2.
Equivalence of proof nets is generated by the four remaining
permutations, on ⊥-introduction.

Proposition 6 ([15]). For proofs Π, Π′ and proof nets `, `′, if
Π Z⇒ ` and Π′ Z⇒ `′, then Π ∼ Π′ if and only if ` ∼ `′.
The above proposition means that MLL proof equivalence is the
problem of deciding equivalence of proof nets.

Notation
We will use a concise diagrammatic notation for sequents and proof
nets. The units 1 and ⊥ are represented by a circle (◦) and a disc (•)
respectively; formulae related by a tensor will be connected by
edges; formulae related by a par will be juxtaposed, and collected
in a box when a par-formula is an immediate subformula of a
tensor-formula (and also for illustrative purposes). For example,
the following denote the same sequent:

⊥⊗⊥,⊥⊗⊥, 1, (1

&

1

&

1)⊗⊥

The links of a proof net are added to the sequent as coloured arrows.
The following example is a proof net for the above sequent.

We will denote byAn the sequent consisting of n occurrences of
a formula A. Given a sequent Γ = A1, . . . , An we will write

⊗
Γ

for A1⊗ · · · ⊗ An, and

&

Γ for A1

&

· · ·

&

An. In diagrammatic
notation, a big disc will represent an n-ary tensor over only ⊥-
formulae,

⊗
(⊥n), and a big circle will represent an n-ary par (or a

sequent) over only 1-formulae,

&

(1n). A linking between
⊗

(⊥n)
and

&

(1n) will be represented by a wide arrow, as illustrated below.

⇒

Two formulae
⊗

(⊥i+1) and
⊗

(⊥j+1) may together connect to
a formula

&

(1i+j+1), as illustrated below for i = 2 and j = 3.
Nodes will be labelled i′ for i + 1, so that both the abbreviated
formulae and the arithmetic of connecting them remain intuitive.

⇒

2′ 3′

5′

A path in a proof net or switching graph is indicated a b, and
illustrated as below.

3. Encoding constraint logic
Non-deterministic constraint logic [6, 8, 9] is a simple graph-
rewriting formalism, used here as a convenient tool for PSPACE-
hardness reduction. A constraint graph is a graph with weighted
edges and an inflow constraint—a natural number that may be taken
to be always 2—on each vertex. A configuration is an assignment
of directions to the edges of the underlying undirected constraint
graph. A rewrite step consists of the reversal of a single edge in a
configuration, while preserving the condition that the total weight
of the incoming edges at each vertex is at least its inflow constraint.

Figure 4 shows an example rewrite sequence in a part of a
constraint graph. The central node has inflow constraint 2, the thick
blue edge has weight 2, and the thinner red edges have weight 1.

The specific problem we will use is the configuration–to–
configuration problem, which asks whether a path of rewrite steps
exists between two constraint graphs. A constraint graph may be
encoded as a sequent, and a configuration as a proof net. It is useful
for us to generalise the notion of configuration a little: we will allow
partial configurations, where edges may be left undirected—as long
as the inflow constraints are satisfied by the directed edges.

Definition 7. A constraint graph G = (V,E, c, v, w) consists of:
a set V of vertices with inflow constraint c : V → N; and a set E
of undirected edges with weight w : E → N, connecting the two
vertices v(e) = {v1, v2} ⊆ V .

A (partial) configuration for a constraint graph is a (partial)
function γ : E → V such that

• for every edge e, if γ(e) is defined then γ(e) ∈ v(e),
• for every vertex v, the total weight of its incoming edges is at

least its inflow constraint,
∑
{w(e) | γ(e) = v} ≥ c(v).

A reconfiguration step γ 1∼ δ relates two (partial) configurations
for G that differ in value (or definedness) on exactly one edge;
this edge is then called mobile in γ and δ. The reflexive–transitive
closure of (

1∼) will be denoted (∼).

1∼ 1∼ 1∼

Figure 4. A series of reconfiguration steps in a constraint graph

Proposition 8. For total configurations γ and δ, if γ ∼ δ then γ
and δ are also connected by a sequence of reconfiguration steps
over total configurations only.

Proof. By the following two observations: firstly, if γ 1∼ δ for partial
configurations, then these may be completed to total configurations
γ′

1∼ δ′ or γ′ = δ′; and secondly, if γ′ and γ′′ are total configura-
tions that both agree with a partial configuration γ where the latter
is defined, then γ′ and γ′′ are connected by reversing the edges on
which they disagree one after another.

Non-deterministic constraint graph reconfiguration or NCG-
reconfiguration is the problem of deciding whether two total con-
figurations of a constraint graph are connected by a sequence of
reconfiguration steps.

Theorem 9 ([9], Theorem 5.15). NCG-reconfiguration is PSPACE-
complete.

We will demonstrate the PSPACE-hardness of MLL proof equiva-
lence by an encoding of NCG-reconfiguration in MLL proof nets.

The encoding
The basis of the encoding of constraint graphs in MLL is formed
by weight elements, which encode one unit of weight on an edge,
and constraint elements, that encode one unit towards the inflow
constraint of a vertex. The arithmetic of linking formulae of the form⊗

(⊥n) to formulae

&

(1m) will be used to ensure that a weight
element may be linked to only two vertices. Below left is a weight
element, below right a constraint element.

i′ j′ k′ m′ n′

For all edges and vertices in the encoding of a constraint graph, the
sum i+ j + k = m+ n will be the same – this way, a priori any
weight element may connect to any constraint element. The value
of m (and thus n) will differ for each vertex. The weight element
above will be able to connect naturally to those constraint elements
where m = i and where m = i+ j, as illustrated below.

i′ j′

i′

i′ j′

i+j′

To ensure that no other connections can be made, values are chosen
such that m ≡ 1 and n ≡ 2 (mod 3), and accordingly i ≡ 1,
j ≡ 0, and k ≡ 2 (mod 3).

In a constraint graph, the sum of all weights is usually greater
than the sum of all inflow constraints—otherwise, no edge can move,
or no configuration exists. An encoding will therefore have weight
elements not connected to constraint elements. These will instead
connect to additional, separate 1-formulae, referred to as weight

∼ ∼

Figure 5. Rewiring three edge-gadgets connected to a single vertex-gadget

absorbers, as follows.

An edge will be encoded by an edge-gadget, illustrated below
left, constructed by stringing together a number of similar weight
elements plus a single indicator vertex. Illustrated below right is a
vertex-gadget encoding a vertex, formed by a number of constraint
elements plus a single indicator target.

i′ j′ k′

i′ j′ k′

m′ n′

m′ n′

It would be natural to encode an edge of weight n by an edge-
gadget with n weight elements. However, there is a minor issue
that prevents this straightforward approach. Although one weight
element cannot ‘fill’ an inappropriate constraint element, two weight
elements can, in the way illustrated below.

In such an inappropriate linking, since both halves of the constraint
element are connected, the weight elements must be disconnected—
otherwise, the linking would violate the switching condition. That
means the weight elements must belong to different edges.

As the linkings above illustrate, it may occur that one subformula
of a weight element A

&

B

&

C fills one half of a constraint
element. Consequently, a weight element can fill three halves,

but only of different constraint elements. The other three halves
may be filled by weight elements of a different edge—so to fill
3 constraint elements requires 2 inappropriate edges. To fill the
next three constraint elements, at most 1 previous inappropriate
edge may be used, and one additional one is needed. To fill 3n
constraint elements inappropriately therefore requires n+ 1 edges.
It thus suffices to multiply the number of constraint elements by
three times the number of edges, and encode a vertex with inflow
constraint c by a vertex-gadget with c× 3× |E| constraint elements
(where |E| denotes the number of edges in the constraint graph).

The complete encoding of a constraint graph G will then be a
sequent Γ consisting of:

1. all vertex-gadgets, combined in a single formula via tensors,

2. all edge-gadgets as individual formulae, and

3. a sufficient number of weight absorbers (1-formulae).

A configuration for G will be encoded as a proof net for Γ, and
conversely each proof net for Γ may be interpreted as a (partial)
configuration for G.

Figure 5 displays an encoding of two edges of weight 1, and one
of weight 2, connecting to a central vertex with inflow constraint 2,
as in the example reconfiguration sequence in Figure 4. The jumps
from the three indicator vertices, at the bottom, indicate which
vertex an edge is directed at. Indicator jumps can only be rewired
between vertices when the edge-gadget is connected only to weight
absorbers—in the first net of Figure 5, the two leftmost edges are
mobile, and in the third, the rightmost edge is mobile. All three
nets in Figure 5 then correspond to the third graph in Figure 4, but
the first net allows rewiring according to the second and first graph,
whereas the third net allows rewiring according to the fourth graph.

The encoding will be made formal in Section 5; first we will
establish some basic results for rewiring on proof nets.

4. Rewiring proof nets
In this section we will explore the global rewiring behaviour of
proof nets. We will look at notions of subnets; we will introduce
a notion of relative parity between nets, which if odd, guarantees
inequivalence; and we will give a simple account of equivalence for
the fragment of MLL that omits the par.

The notions and results introduced in this section will be used
in the main proofs of the paper, in Section 5, which show that the
encoding of NCG-reconfiguration in MLL proof equivalence, as
described informally in the previous section, is correct.

Subnets
We will discuss (and adapt) some convenient standard notions for
MLL proofs and proof nets, and relate them to rewiring. Firstly we
will look at subnets—see also [2].

Definition 10. A sub-sequent ∆ ≤ Γ of a sequent Γ is a sequent
consisting of disjoint subformulae of Γ, preserving names.

Definition 11. A subnet (∆, `′) ≤ (Γ, `) of a proof net is a net
such that ∆ ≤ Γ and `′ is the restriction of ` to the names in ∆.

The ports of a sub-sequent Γ′ or subnet (Γ′, `′) are the root
vertices of Γ′. For a vertex v naming a par, tensor, or bottom, the
subnets of which it is a port correspond to the possible subproofs
of the rule introducing v in a sequentialisation (the subproof of a
1-subformula must always be empty).

In the graph of a proof net, a chosen subnet for a par can be
made explicit as a box, as illustrated below left. Boxes may replace
the switching condition as a correctness criterion: in the example,
both the outside and the inside of the box form a tree. To make this
precise, we will consider the action of closing a box, which means it
is regarded as a single vertex in the graph, as illustrated below right.

Definition 12. A boxing s for a linking ` for Γ assigns a sub-sequent
s(v) ≤ Γ to each par-vertex

&

v such that 1) v is a port of s(v) and
2) boxes are either disjoint or strictly nested: if s(v) ∩ s(w) 6= ∅
then s(w) < s(v) or s(v) < s(w).

In the graph for ` and Γ, a box s(v) may be closed by replacing the
subgraph over s(v) by the single vertex v, and replacing every arc
into s(v) by one onto v. For each box s(v) we define the local graph
to be that formed by the subgraph over s(v) where each immediately
smaller box s(w) < s(v) is closed. The following is then a variation
on the local retraction algorithm by Danos [4].

Proposition 13. A linking ` for Γ is a proof net if and only if it has
a boxing s such that each local graph is a tree.

Proof. Given a boxing s, it follows by induction on the nesting of
boxes that the graph over each s(v) satisfies the switching condition.
In the other direction, given a sequentialisation of (Γ, `), a box
s(v) ≤ Γ for each

&

v is found by taking the conclusion ∆, A

&

vB
of its introduction rule, below.

∆, A,B

∆, A

&

v B

&

In a proof net, the kingdom and the empire of a vertex v are
respectively the smallest and largest subnet that have v as a port.
In working with the rewiring relation, the notion of empire can be
particularly useful. We will denote the empire of v in ` by `|v (used
both as a graph and a set of vertices).

Proposition 14 ([2, Proposition 2.b]). The empire `|v is determined
by propagation from v: 1) through links; 2) up towards subformulae;
3) into a tensor if one of its subformulae is in `|v − {v}; 4) into a
par if all its subformulae are in `|v − {v}.
The following three lemmata show how empires are connected to
rewiring. Firstly, a jump from ⊥v may be rewired to exactly those
1-occurences that are in the empire of v (Lemma 15). Secondly,
rewiring this jump preserves the empire of v, up to that rewiring

(Lemma 16). Thirdly, the empire of any other vertex w will grow or
shrink, or neither, but not both (Lemma 17).

Lemma 15. For a proof net (Γ, `) where `(a) = v, and w names a
1-occurrence in Γ, the following are equivalent:

1. ` 1∼ `′ where `′(a) = w;
2. w is in the empire `|a; and
3. in any switching graph for (Γ, `), the path v w does not pass

through a.

Proof. By [2, Proposition 2.a] 2 and 3 are equivalent.
Next, it is shown that 2 implies 1. The empire `|a corresponds

to the largest subproof Σ in any Π Z⇒ ` with as conclusion the
introduction rule of ⊥a. By Definition 4, in the translation of Σ to a
net, a may link to any 1-occurrence, including to w.

Finally, it is shown that 1 implies 3, by contraposition. If for
some switching of ` the path v w passes through a, then in `′

there is no path a v (and two paths a w) for that switching, so
that `′ is not a net.

Lemma 16. If ` 1∼ `′ by `(v) 6= `′(v) then `|v
1∼ `′|v .

Proof. Since v may rewire to exactly the same 1-occurrences in `
as in `′, by Lemma 15 the empires `|v and `′|v contain the same
1-subformulae. That they also share any other subformulaA follows
by the observation that A⊗ 1 may replace A: by Proposition 14 the
new 1 is in a given empire if and only if A is (unless v names A,
but in this case A is included in both `|v and `′|v).

Lemma 17. If ` 1∼ `′ where `|v is a net for the sequent ∆, and `′|v
a net for ∆′, then ∆ ≤ ∆′ or ∆ ≥ ∆′.

Proof. Let the link from a be rewired, `(a) = w but `′(a) = w′.
Using Proposition 14, there are four cases.

1. If the empire of v is propagated from a to w in `, it includes the
empire of a. Then by Lemma 16 ∆ = ∆′.

2. If the empire of v includes w but not w′, then it is propagated
through a in ` but not in `′, so that ∆ ≥ ∆′.

3. If the empire of v includes w′ but not w, then ∆ ≤ ∆′.
4. Otherwise, ∆ = ∆′.

Parity
The linearity of MLL means that in a proof or proof net, there is
always a certain balance to the number of ⊥- and

&

-occurrences.
This observation gives a well-known necessary condition for the
provability of a sequent.

Definition 18. The balance of a sequent is the number of⊥s minus
the number of

&

s and commas. A sequent is balanced if its balance
is zero.

Proposition 19. An unbalanced sequent is uninhabited.

Here, we will introduce a similar necessary condition for the
equivalence of two proof nets. We shall associate a parity with any
pair of linkings ` and `′ over the same sequent Γ, and we shall find
that the parity of equivalent linkings is always even.

For this argument we will work with n-ary connectives⊗ and

&

,
and alternating formulae, i.e. every argument of a ⊗ is a

&

and vice
versa. The units are given by the 0-ary connectives, and we need
not rule out unary ones. We will consider a given named sequent Γ,
but will assume that it consists of a single formula, if necessary by
introducing a

&

at the root.
To be able to compare arbitrary proof nets over Γ, we will use

the following naming scheme for the edges of a switching graph,
for any proof net over Γ. A tensor

⊗
(A1, . . . , An) named v has n

edges, which we shall name v(1) through v(n); a par

&

v has one
switched edge, to be named v(1); and ⊥v has the jump named v(1).
The naming scheme identifies edges across all switching graphs of
all proof nets for Γ.

Taking a different perspective, we may consider a switching
graph as a directed tree, rooted in the root connective of Γ. This
establishes a bijection between the edges and the non-root vertices,
which associates each edge with its target vertex.

The example in Figure 6 displays a proof net on the left, and
on the right the switching graph choosing the edge i j for the
par i, and the edge r g for the root par r. The induced bijection
associates for example the edge named r(1) with the vertex g, the
edge g(1) with h, and the edge h(1) with a; it further associates
f(1) with f and c(3) with c.

Given two proof nets ` and `′ for Γ, and a switching graph for
each (not necessarily given by the same switching of Γ), we obtain
two bijections between edges and (non-root) vertices. Composing
these gives a permutation on the non-root vertices.

Definition 20. The parity of two switching graphs for proof nets `
and `′ for a sequent Γ is the parity of their induced permutation.

We will show that both 1) rewiring and 2) choosing a different
switching induce even parity. By 2) we may define the parity of two
proof nets ` and `′ to be that over arbitrary switching graphs; then
by 1) it follows that proof nets with odd parity are inequivalent.

We will demonstrate 1), while 2) is similar. Let ` 1∼ `′ by
rewiring a jump from v a to v b. By fixing a switching for Γ,
we obtain a switching graph for each of the two nets, where the
jump is named v(1) in each. There are two possibilities, illustrated
in Figure 7. On the left, if the jump v(1) is directed upward, then
the target of each edge in the directed switching graphs remains the
same—in particular v(1) has target v—and the induced permutation
is the identity.

On the right, in Figure 7, if the jump from v is directed downward,
the subtree of a will get the new root node b. Then the vertices that
are associated with a new edge are exactly those on the path a b
in the switching graph, as illustrated below.

a v0 v1 v2n b
. . .

Since the connectives in Γ were assumed to be strictly alternating,
there are an odd number of vertices on this path, 2n+ 3: each even
vi must be a ⊥ or

&

, while each odd vj must be a 1 or ⊗. The
permutation induced is then as follows. Since v has target a in the
first switching graph, and target b in the second, it takes a to b.
Further, since an edge connecting vi and vi+1 has target vi+1 in the
first, but target vi in the second graph, the permutation takes vi+1 to
vi. The complete permutation is then a cyclic one taking each vertex
on the path a b to the previous, and the first to the last. A cyclic
permutation of odd length has even parity.

The above argument gives us 1), that rewiring has even parity. To
see that the same argument also gives 2), it is sufficient to consider
that choosing a different switching for a single par is essentially
the same operation as rewiring, if the par is considered a ⊥ and the
switched edge a jump. We may thus conclude that:

Proposition 21. Two equivalent proof nets have even parity.

Equivalence without

&

Let a basic sequent be one of formulae constructed only over 1,
⊥, and ⊗. After removing dangling ⊥-formulae and replacing
subformulae 1 ⊗ A with A, basic sequents consist of formulae
of the form 1 or

⊗
(⊥n) with n ≥ 2.

Provability for basic sequents is entirely determined by balance:

1a 1b ⊗c

⊥d ⊥e ⊥f

⊗g

⊥h

&

i

1j 1k

&

r

1a

1b

⊗c
⊥d ⊥e

⊥f

⊗g
⊥h

&

i

1j

1k

&

r

Figure 6. A switching graph of a proof net as a directed tree

1a 1b

⊥ ∼

1a 1b

⊥

⊥

1a

1b

∼

⊥

1a

1b

=

⊥

1b

1a

Figure 7. Rewiring on the directed tree of a switching graph

Proposition 22. A balanced basic sequent is inhabited.

We will show that, similarly, equivalence for basic sequents is
determined by parity. An immediate observation is that a proof net
for a basic sequent with only one tensor-formula, every 1 is linked
to by exactly one jump—which means that no rewiring is possible.

Proposition 23. A basic sequent 1n,
⊗

(⊥n) is inhabited by ex-
actly n! inequivalent proof nets.

In the following we will characterise equivalence for basic
sequents with two or more tensor-formulae.

Lemma 24. Let ` be a proof net with for every switching a
path `(a) a b `(b) `(c) c d `(d). Then ` ∼ `′ where
`′(a) = `(b) and `′(b) = `(a), `′(c) = `(d), and `′(d) = `(c),
and `′(z) = `(z) otherwise.

Proof. By the rewiring path shown in Figure 8.

Lemma 25. A basic sequent with at least two tensor-formulae has
at most two equivalence classes of proof nets.

Proof. By induction on the size of a sequent Γ. The base case is the
sequent 1, 1,⊥⊗⊥, which has two inequivalent proof nets. For the
inductive step, let Γ = Γ′, A⊗⊥a, 1z where A⊗⊥a is a largest
⊗-formula in Γ. It will be shown that any net ` is equivalent to one
`′ where `′(a) = z; then by induction, the subnet `′ restricted to
Γ′, A belongs to one of two equivalence classes. To find `′, there
are two cases.

1) The path a z is via `(a). If `(a) = z, we are done.
Otherwise, by Lemma 15 `′ may be obtained from ` by changing
only `′(a) = z.

a b

x y

c d

u v 1∼

a b

x y

c d

u v 1∼

a b

x y

c d

u v 1∼

a b

x y

c d

u v 1∼

a b

x y

c d

u v 1∼

a b

x y

c d

u v 1∼

a b

x y

c d

u v

Figure 8. Double exchange of links (Lemma 24)

2) The path a z is via some ⊥b in A. Firstly, if `(b) 6= z, use
Lemma 15 to re-attach b to z. Next, let ⊥c and ⊥d be occurrences
in a separate formula B such that c links to the same 1-occurrence
as some ⊥ in A. Then `′ is obtained by linking c to b, and applying
Lemma 24 to exchange the targets of a and b, as well as those of c
and d.

Proposition 26. For a basic sequent with at least two tensor-
formulae, two proof nets with even parity are equivalent.

Proof. By Lemma 25 the sequent has at most 2 equivalence classes.
Given two proof nets of even parity, both must be in the other
equivalence class than a proof net with odd relative parity to both,
which exists by exchanging two jumps from one tensor-formula.

5. Formalising the encoding
We will formalise the encoding of NCG-reconfiguration into MLL
proof equivalence that was informally introduced in Section 3.
A constraint graph G will be encoded as a sequent JGK, and a
configuration γ for G will be encoded as a proof net JγK for JGK.
We will show that γ ∼ δ if and only if JγK ∼ JδK (modulo a small
adjustment to ensure even parity between JγK and JδK).

For a constraint graph G = (V,E, c, v, w), let |V | and |E|
denote the number of vertices and edges, and let |c| and |w|
denote the sum of all inflow constraints and the sum of all weights,
respectively:

|c| =
∑
v∈V

c(v) |w| =
∑
e∈E

w(e) .

Definition 27. The encoding JGK of a constraint graph G is a
sequent constructed as follows. Let G = (V,E, c, v, w) with
|V | = n, |E| = m, V = {v1, . . . , vn}, and E = {e1, . . . , em}.
The encoding of a vertex vk is the formula

JvkK =

&(
Cn(k)3m×c(vk)

) &

1

where each constraint element Cn(k) is the formula

Cn(k) =

&(
13k+2)⊗ &(

13(n−k)+3) .
The encoding of an edge e connecting vertices vi and vj with i < j
is the formula

JeK =
⊗(

Wn(i, j)3m×w(e))⊗⊥
where each weight element Wn(i, j) is the formula

Wn(i, j) =
⊗(

⊥3i+2) &⊗(
⊥3(j−i)+1) &⊗(

⊥3(n−j)+3) .
The encoding of the graph G is the sequent

JGK = Jv1K⊗ . . .⊗ JvnK, Je1K, . . . , JemK, 1p

where p = 3m× (|w| − |c|)× (3n+ 4).

In the above definition, the final 1-subformula of a vertex-gadget
JvkK is its indicator target; the final ⊥-subformula of an edge-
gadget JeK is its indicator; and in the completed encoding JGK the p

instances of 1 are the weight absorbers. In a constraint graph G, a
vertex v and an edge e will be called appropriate (for each other) if
v ∈ v(e), and inappropriate otherwise. This notion is extended to
vertex-gadgets JvK and edge-gadgets JeK in JGK, and their respective
constraint elements and weight elements.

A configuration γ for a constraint graph G will be encoded as a
proof net for the sequent JGK. Firstly we will define a standard way
of linking a weight element to a constraint element.

Definition 28. ForW = Wn(i, j) = A

&

B

&

C a weight element,

1. for a constraint element C = Cn(i) = X ⊗ Y , the standard
linking for the sequent W,C links the first ⊥ in A to the first 1
in X , the first ⊥ in B and C each to the first 1 in Y , and each
remaining ⊥ in A,B,C to a remaining 1 in X,Y in their order
of occurrence;

2. for C = Cn(j) = X ⊗ Y , the standard linking for W,C is
defined as above, except the first⊥ in B links to the first 1 in X;

3. the standard linking for the sequentW, 13n+4 links the first⊥ in
A, B, and C to the first 1, and each remaining ⊥ to a remaining
1 in order of occurrence.

The standard linkings defined in the second and third case of the
above definition are illustrated below.

Proposition 29. Standard linkings are proof nets.

The encoding of a configuration is then as follows.

Definition 30. The encoding JγK of a total configuration γ for a
constraint graph G is a linking ` for JGK, constructed incrementally
for each successive edge e and for each successive weight element
W within e, as follows. Let γ(e) = v; firstly, the indicator of JeK
is linked to the indicator target of JvK. Then successively for each
weight element W in e, if JvK has a first free constraint element
C, extend JγK to include the standard linking on W,C; otherwise,
extend JγK by the standard linking on the sequent consisting of W
plus the first 3n+ 4 free weight absorbers.

Proposition 31. If γ is a total configuration for G then JγK is a
proof net for JGK.

Proof. Using Proposition 13, it is sufficient to give a suitable box
for each

&

. The box of each weight element W is the sequent W,C
or W, 13n+4 of its standard linking, which forms a proof net by
Proposition 29. The box of each vertex-gadget JvK contains the

edge-gadgets JeK such that γ(e) = v, plus all the weight absorbers
within boxes of weight elements inside JeK. Since the weights of the
connected edges e sum to more than the inflow constraint of v, there
are no unused constraint elements remaining in JvK. After closing
the box of each W , each edge-gadget in the box of JvK becomes a
single string of connected vertices, connected to other edge-gadgets
only via the indicator target of JvK, thus forming a tree.

Finally, if two connected configurations γ ∼ δ are encoded
individually as JγK and JδK, these may not be equivalent simply
because their parity happens to be odd. For that reason we shall
adjust the encoding of the second to guarantee an even parity.

Definition 32. Let JδK′ be JδK with the first two weight absorbers
exchanged. For configurations γ and δ for G, let JδKγ be JδK if it
has even parity with JγK, and JδK′ otherwise.

In the remainder, we will show that our encoding is correct, i.e.
that γ ∼ δ if and only if JγK ∼ JδKγ . This will be separated into
two parts: completeness (⇒) and soundness (⇐) .

Completeness
Given a reconfiguration path γ ∼ δ over total configurations, we will
demonstrate a rewiring sequence between JγK and JδKγ . The central
part of the argument will be to show how the weight element linking
to a constraint element may be exchanged for another (Lemma 33).
Before and after the exchange, the constraint element and the weight
element connecting to it will be in a standard linking. The linking
between weight elements and weight absorbers need not be standard:
it will be shown that weight absorbers may be freely rearranged, as
long as parity remains even (Lemma 34).

For a reconfiguration step γ 1∼ δ where the edge e changes
direction from v to w, the rewiring sequence JγK ∼ JδKγ will be as
follows. First, the weight elements of edge-gadgets connecting to
JvK are rearranged to match their target configuration, in JδKγ , which
means the weight elements of JeK connect only to weight absorbers.
Then JeK is moved from JvK to JwK by rewiring its indicator link,
from the indicator of JvK to that of JwK. Next, the weight elements
connecting to JwK are rewired to match JδKγ , and finally, weight
absorbers are rearranged to match JδKγ as well.

To describe the intermediate stages of such a rewiring sequence,
call an edge-gadget JeK well linked if: 1) its indicator connects
to the indicator target of an appropriate vertex-gadget JvK, and
2) each weight element is either in a standard linking with a
constraint element of JvK, or linked only to weight absorbers (in
arbitrary fashion). A well-linked edge-gadget is mobile if all its
weight elements connect only to weight absorbers. In the following
main lemma we will exchange the weight element linking to a
constraint element. The lemma considers a sequent consisting of
just a vertex-gadget, some appropriate edge-gadgets, and sufficiently
many weight absorbers.

Lemma 33. In a proof net ` for Γ = JvK, Je1K, . . . , JemK, 1p where
each edge-gadget is well linked, if a weight element Wi in JeiK is
linked to V in JvK and Wj in JejK is linked to weight absorbers 1n,
then there is a net `′ ∼ ` in which Wj is naturally linked to V , Wi

is linked to 1n, and `′ agrees with ` otherwise.

Proof. LetWi = A

&

B

&

C,Wj = D

&

E

&

F , and V = X⊗Y .
The rewiring path will be illustrated for the case where A,B,X and
D,X , and thus also C, Y and E,F, Y , are balanced sequents; other
cases are similar.
1. The initial configuration is illustrated below. Other edges, other
weight and constraint elements, and the outer box of the vertex-
gadget, are omitted. The vertices i, j, and v are the indicators of
JeiK and JejK and the indicator target of JvK, respectively.

1n

A B C
i

D E F
j

X Y

v

2. The link i − v is re-connected to a weight absorber together
with only the links from the first ⊥ of each of D, E, and F :

3. The link from the first ⊥ of D is moved to X , and those from
the first ⊥ of E and F are moved to Y :

4. In the present configuration, the links from the weight elements
form two subnets: one over the sub-sequent A,B,X,D, 1m, and
one over the sub-sequent C, Y,E, F, 1k, for some m and k. By
Proposition 26, these subnets are equivalent to any other over the
same sequent, as long as their parity is preserved. It is then sufficient
to choose linkings so that D

&

E

&

F is in a a standard linking
with X ⊗ Y , with a minor adjustment: two links from D to X
should remain exchanged, compared to the standard linking, for step
6 below. The links of A,B,C link to the weight absorbers 1m and
1k, with one remaining link from B to X and one from C to Y .

5. The link from C to Y is moved towards a weight absorber
connected to A,B.

6. The link from B to X is the one remaining connection between
the edge-gadgets JeiK and JejK. Lemma 24 allows to swap the targets
of the link from B to X and the link from i, and simultaneously
undo the exchange in the links from D to X added in step 4 above.

7. The link from i is re-attached to v to yield the final configura-
tion:

1n

A B C
i

D E F
j

X Y

v

In the exchange of weight elements in the above lemma, weight
elements link to weight absorbers in arbitrary fashion. To be able
to correct for this, the next lemma will demonstrate that, modulo
parity, weight absorbers can be re-arranged at will.

Lemma 34. If ` and `′ are well-linked proof nets for JGK that are
equal up to an even permutation of weight absorbers, then ` ∼ `′ if
` and `′ have at least one mobile edge-gadget JeK.

Proof. To reconfigure `′ into `, we will use the double exchange
operation of Lemma 24 to exchange two arbitrary weight absorbers
at a time, as well as two chosen jumps in the mobile edge-gadget JeK.
Firstly, let e0 be the indicator of JeK. Note that since JeK is mobile,
e0 may re-attach anywhere within the proof net.

We will need two basic operations: 1) to exchange two arbitrary
weight absorbers v and w linked from outside JeK; and 2) to
exchange an arbitrary weight absorber linked from inside JeK with
one linked from outside JeK. Since we are using double exchanges,
each operation will also exchange two arbitrary jumps from JeK (but
not that from e0). By using operation 1) twice, we obtain a third,
where four arbitrary weight absorbers linked from inside JeK are

pairwise exchanged. Since `′ and ` differ by an even permutation of
weight absorbers, these three operations together give `′ ∼ `.

To perform operation 1), exchanging v and w as well as the
jumps from e1 and e2 in JeK, first connect e0 to v. Then apply
Lemma 24 three times: exchanging v and w, and the targets of
e0 and e1; exchanging w and v, and the targets of e1 and e2; and
exchanging v and w, and the targets of e2 and e0. The result is a net
exchange of v and w, and the targets of e1 and e2.

Operation 2) is performed similarly. In both cases, if one of the
weight absorbers exchanged is linked to by multiple ⊥-occurrences
within the same weight element, these may be temporarily attached
elsewhere.

Lemma 35. If γ ∼ δ for total configurations γ and δ, then
JγK ∼ JδKγ .

Proof. By Proposition 8 we may assume that γ ∼ δ by a sequence
of reconfiguration steps over total configurations. We will prove that
if γ 1∼ δ then JγK ∼ JδK or JγK ∼ JδK′. The same proof will show
the corresponding case for JγK′ instead of JγK, so that the general
case for γ ∼ δ follows by transitivity.

Let γ and δ agree on every edge except e, where γ(e) = v and
δ(e) = w. Firstly, using Lemma 33, for the edges d other than e
such that γ(d) = v, the weight elements of the edge-gadgets JdK
may be linked to the constraint elements of JvK, in accordance with
the target configuration JδK. Since e is mobile in γ, the weights of the
edges d suffice to fill the inflow constraint of v, and correspondingly
the weight elements of edge-gadgets JdK suffice to fill the constraint
elements of JvK, so that JeK is mobile. Next, the indicator vertex of
JeK, which links to the indicator target of JvK, is re-attached to the
indicator target of JwK. Again using Lemma 33, the weight elements
of edge-gadgets connected to JwK, including JeK, may be linked
in accordance with JδK. The resulting proof net is JδK modulo a
permutation of weight absorbers; then it is equivalent to either JδK
or JδK′ by Lemma 34.

Soundness
It will be shown that proof net rewiring JγK ∼ JδKγ is sound for
NCG-reconfiguration, γ ∼ δ. To each proof net ` for an encoded
constraint graph JGK we will associate a partial configuration
γ = L`M, such that 1) a rewiring step between ` and `′ corresponds
to a reconfiguration path L`M ∼ L`′M, and 2) the function L−M is a
retraction of the encoding of configurations, LJγKM = γ.

The configuration L`M will assign an edge e to a vertex v when,
in the proof net (`, JGK), the edge-gadget JeK is in the empire of
the vertex-gadget JvK. Firstly, it will be shown that L`M is a partial
function.

Proposition 36 ([2, Proposition 1.i]). In a proof net, if vertices v
and w are joined by a tensor, then any two subnets of which they are
respective ports are disjoint.

Lemma 37. In a proof net for JGK, an edge-gadget JeK belongs to
the empire of at most one vertex-gadget JvK.

Proof. Since vertex-gadgets are joined by a tensor, the lemma is
immediate from Proposition 36.

Next, it will be shown that the appropriate edge-gadgets in the
empire of a vertex-gadget JvK contain sufficient weight elements to
fill the constraint elements of JvK.

Lemma 38. In a proof net for JGK, for each node v in G, the
weights of the appropriate edge-gadgets in the empire of JvK are
equal to or greater than the constraint of v.

Proof. Let |E| = m. We will show that the inappropriate edge-
gadgets in G are insufficient to fill 3m weight elements in JvK.
Since weight elements come in multiples of 3m, it follows that to
fill the 3m× c(v) constraint elements of v, there must be at least as
many appropriate weight elements available.

Let e be inappropriate for v; let C = A ⊗ B be a constraint
element in JvK, andW = X

&

Y

&

Z weight element in JeK. To find
a proof net for the sequent W,C requires to assign balanced boxes
to the par-formulae A and B. Since e is inappropriate, the sequents
A,X and A,X, Y are not balanced, while the balance of each of
the other sequents of A with one or more of X,Y, Z is always 1 or
2 (mod 3). It follows that there is no proof net for W,C.

Next, it will be shown that to balance 3m constraint elements
requires at least m + 1 inappropriate edge-gadgets. Two edge-
gadgets may balance at most three constraint elements: one weight
element W has three subformulae, which may each balance at
most one half of a constraint element; the other halves may be
balanced by different weight elements of the second edge-gadget.
In the same way, adding one further edge-gadget allows at most
three further constraint elements to be filled, since previous edges
may connect to only one half of each constraint element. Then to
balance 3m constraint elements inappropriately requires m + 1
edge-gadgets.

Using the above, a proof net for JGK may be interpreted as a
configuration for G.

Definition 39. For a proof net ` for JGK, let L`M be the partial
configuration for G where L`M(e) is v if both e is appropriate for v
and JeK belongs to the empire of JvK, and undefined otherwise.

The following lemma then shows that rewiring corresponds to
reconfiguration under L−M.

Lemma 40. If ` ∼ `′ are proof nets for JGK then L`M ∼ L`′M.

Proof. The proof will consider the case where ` 1∼ `′; the general
case follows by transitivity. By Lemma 17, the empire of each vertex-
gadget JvK contains either a subset of, a superset of, or exactly the
same edge-gadgets in `′ as it does in `. Let Je1K through JenK be the
edge-gadgets moving into or out of the empire of JvK. By Lemma 38
other edge-gadgets must fill the constraint elements of JvK. Then
the corresponding edges e1 through en are mobile in L`M. It follows
that L`M ∼ L`′M by moving each ei in turn, and repeating the process
for other vertices.

6. MLL proof equivalence is PSPACE-complete
We are now ready to state our main theorem.

Theorem 41. MLL proof equivalence is PSPACE-complete.

Proof. MLL proof equivalence has at most non-deterministic poly-
nomial space complexity: a proof net may be represented in linear
space (with respect to a proof); a single rewiring step is performed
without requiring additional space; and a non-deterministic algo-
rithm may guess the correct rewiring sequence. Then by Savitch’s
Theorem [21] MLL proof equivalence is in PSPACE.

PSPACE-hardness is by the encoding of NCG-reconfiguration,
which in its completed form is stated:

γ ∼ δ ⇐⇒ JγK ∼ JδKγ .

The direction (⇒) is by Lemma 35; the direction (⇐) is by
Lemma 40 and the observation that LJγKM = γ and LJδKγM = δ.

Acknowledgments
We would like to thank Lutz Straßburger for comments and discus-
sion, and the anonymous referees for their constructive observations.

References
[1] Michael Barr. *-Autonomous categories and linear logic. MSCS,

1:159–178, 1991.
[2] Gianluigi Bellin and Jacques van de Wiele. Subnets of proof-nets in

MLL−. In Advances in Linear Logic, pages 249–270, 1995.
[3] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural

deduction and coherence for weakly distributive categories. JPAA,
113:229–296, 1996.

[4] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers
processus de normalisation (principalement du Lambda-calcul). PhD
thesis, Université Paris 7, 1990.

[5] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28:181–203, 1989.

[6] Erik D Demaine and Robert A Hearn. Constraint logic: A uniform
framework for modeling computation as games. In Proc. Conference
on Computational Complexity (CCC’08), pages 149–162, 2008.

[7] Jean-Yves Girard. Linear logic. TCS, 50(1):1–102, 1987.
[8] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of

sliding-block puzzles and other problems through the nondeterministic
constraint logic model of computation. Theoretical Computer Science,
343(1–2):72–96, 2005.

[9] Robert A Hearn and Erik D Demaine. Games, puzzles, and computation.
AK Peters, Ltd., 2009.

[10] Willem Heijltjes. Proof nets for additive linear logic with units. In
LICS, pages 207–216, 2011.

[11] Willem Heijltjes and Lutz Straßburger. Proof nets and semi-star-
autonomous categories. MSCS, 2014. To appear.

[12] Robin Houston. Modelling linear logic without units. PhD thesis,
University of Manchester, 2008.

[13] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. ACM Trans. Comp. Log., 6(4),
2005.

[14] Dominic J.D. Hughes. Simple free star-autonomous categories and full
coherence. JPAA, 216(11):2386–2410, 2012.

[15] Dominic J.D. Hughes. Simple multiplicative proof nets with units.
Annals of Pure and Applied Logic, 2012. arXiv:math.LO/0507003.

[16] Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H.
Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On
the complexity of reconfiguration problems. Theoretical Computer
Science, 412(12–14):1054–1065, 2011.

[17] Max I. Kanovich. Horn programming in linear logic is NP-complete.
In LICS, 1992.

[18] François Lamarche and Lutz Straßburger. From proof nets to the free
*-autonomous category. LMCS, 2(4:3):1–44, 2006.

[19] Joachim Lambek. Deductive systems and categories i. syntactic
calculus and residuated categories. Mathematical Systems Theory,
2(4):287–318, 1968.

[20] Patrick Lincoln and Timothy Winkler. Constant-only multiplicative
linear logic is NP-complete. Theoretical Computer Science, 135:155–
169, 1994.

[21] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences,
42:177–192, 1970.

[22] Todd Trimble. Linear logic, bimodules, and full coherence for au-
tonomous categories. PhD thesis, Rutgers University, 1994.

