170 research outputs found

    Low surface gravitational acceleration of Mars results in a thick and weak lithosphere : implications for topography, volcanism, and hydrology

    Get PDF
    The first author acknowledges funding from an Initiative d’Excellence (IDEX) “AttractivitĂ©â€ grant (VOLPERM), funded by the University of Strasbourg. M.H. also acknowledges support from the CNRS (INSU 2016-TelluS-ALEAS).Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes—the primary mechanism for magma transport on both planets—can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.PostprintPeer reviewe

    Microstructural Controls on the Uniaxial Compressive Strength of Porous Rocks Through the Granular to Non‐Granular Transition

    Get PDF
    Under uniaxial compression, a porous rock fails by coalescence of stress‐induced microcracks. The micromechanical models developed to analyze uniaxial compressive strength data consider a single mechanism for the initiation and propagation of microcracks and a fixed starting microstructure. Because the microstructure of clastic porous rock transitions from granular to non‐granular as porosity decreases during diagenesis, their strength cannot be captured by a single model. Using synthetic samples with independently controlled porosity and initial grain radius we show that high‐porosity granular samples, where microcracks grow at grain‐to‐grain contacts, are best described by a grain‐based model. Low‐porosity non‐granular samples, where microcracks grow from pores, are best described by a pore‐based model. The switch from one model to the other depends on porosity and grain radius. We propose a regime plot that indicates which micromechanical model may be more suitable to predict strength for a given porosity and grain radius

    Hot climate inhibits volcanism on Venus : constraints from rock deformation experiments and argon isotope geochemistry

    Get PDF
    M.J. Heap acknowledges funding from an Initiative d’Excellence (IDEX) “AttractivitĂ©â€ grant (VOLPERM), funded by the University of Strasbourg.The disparate evolution of sibling planets Earth and Venus has left them markedly different. Venus’ hot (460 °C) surface is dry and has a hypsometry with a very low standard deviation, whereas Earth’s average temperature is 4 °C and the surface is wet and has a pronounced bimodal hypsometry. Counterintuitively, despite the hot Venusian climate, the rate of intraplate volcano formation is an order of magnitude lower than that of Earth. Here we compile and analyse rock deformation and atmospheric argon isotope data to offer an explanation for the relative contrast in volcanic flux between Earth and Venus. By collating high-temperature, high-pressure rock deformation data for basalt, we provide a failure mechanism map to assess the depth of the brittle–ductile transition (BDT). These data suggest that the Venusian BDT likely exists between 2–12 km depth (for a range of thermal gradients), in stark contrast to the BDT for Earth, which we find to be at a depth of ~25-27 km using the same method. The implications for planetary evolution are twofold. First, downflexing and sagging will result in the sinking of high-elevation structures, due to the low flexural rigidity of the predominantly ductile Venusian crust, offering an explanation for the curious coronae features on the Venusian surface. Second, magma delivery to the surface—the most efficient mechanism for which is flow along fractures (dykes; i.e., brittle deformation)—will be inhibited on Venus. Instead, we infer that magmas must stall and pond in the ductile Venusian crust. If true, a greater proportion of magmatism on Venus should result in intrusion rather than extrusion, relative to Earth. This predicted lower volcanic flux on Venus, relative to Earth, is supported by atmospheric argon isotope data: we argue here that the anomalously unradiogenic present-day atmospheric 40Ar/36Ar ratio for Venus (compared with Earth) must reflect major differences in 40Ar degassing, primarily driven by volcanism. Indeed, these argon data suggest that the volcanic flux on Venus has been three times lower than that on Earth over its 4.56 billion year history. We conclude that Venus’ hot climate inhibits volcanism.PostprintPeer reviewe

    The Influence of Grain Size Distribution on Mechanical Compaction and Compaction Localization in Porous Rocks

    Get PDF
    The modes of formation of clastic rocks result in a wide variety of microstructures, from poorly-sorted heterogeneous rocks to well-sorted and nominally homogeneous rocks. The mechanical behavior and failure mode of clastic rocks is known to vary with microstructural attributes such as porosity and grain size. However, the influence of the grain size distribution, in particular the degree of polydispersivity or modality of the distribution, is not yet fully understood, because it is difficult to study experimentally using natural rocks. To better understand the influence of grain size distribution on the mechanical behavior of porous rocks, we prepared suites of synthetic samples consisting of sintered glass beads with polydisperse grain size distributions. We performed hydrostatic compression experiments and found that, all else being equal, the onset of grain crushing occurs much more progressively and at lower pressure in polydisperse synthetic samples than in monodisperse samples. We conducted triaxial experiments in the regime of shear-enhanced compaction and found that the stress required to reach inelastic compaction was lower in polydisperse samples compared to monodisperse samples. Further, our microstructural observations show that compaction bands developed in monomodal polydisperse samples while delocalized cataclasis developed in bimodal polydisperse samples, where small grains were systematically crushed while largest grains remained intact. In detail, as the polydispersivity increases, microstructural deformation features appear to transition from localized to delocalized through a hybrid stage where a compaction front with diffuse bands propagates from both ends of the sample toward its center with increasing bulk strain

    Structure and magnetic properties of the cubic oxide fluoride BaFeO2F

    Get PDF
    Fluorination of the parent oxide, BaFeO3- ÎŽ, with polyvinylidine fluoride gives rise to a cubic compound with a = 4.0603(4) Å at 298K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN = 645±5K. Neutron diffraction data at 4.2K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95ÎŒB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment which is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10 to 300K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cel

    Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues

    Get PDF
    International audience'Mean-ïŹeld' models have been proposed as falsiïŹable hypotheses for the acceleration in earthquake rate and other geophysical parameters prior to laboratory rock failure and volcanic eruptions. Importantly, such models may permit forecasting failure or eruption time. However, in existing retrospective analyses it is common to ïŹnd examples of inappropriate techniques for ïŹtting these models to data. Here we test the two main competing hypotheses exponential and power-law acceleration--using maximum likelihood techniques and an information criterion for model choice, based on a Poisson process with variable rate. For examples from the laboratory and Mt Etna, the power law is clearly the best model, both in terms of the ïŹt and the resulting error structure, which is consistent with the Poisson approximation. For examples from Kilauea and Mauna Loa the results are less clear-cut and the conïŹdence interval underestimates the number of outliers. Deviations from the models most likely reïŹ‚ect local interactions and/or non-stationary loading processes not captured by the mean-ïŹeld approach. In addition, we use simulations to demonstrate an inherent problem with model preference, in that a power-law model will only be preferred if failure or eruption occurs close to the singularity. Although mean-ïŹeld models may well provide valuable insight into the physical process responsible for precursory accelerations in earthquake rate, our ïŹndings highlight major difïŹculties that must be overcome to use such models for forecasting

    Evidence for the development of permeability anisotropy in lava domes and volcanic conduits

    Get PDF
    International audienceThe ease at which exsolving volatiles can migrate though magma and outgas influences the explosivity of a volcanic eruption. Volcanic rocks often contain discrete discontinuities, providing snapshots of strain localisation processes that occur during magma ascent and extrusion. Whether these features comprise pathways for or barriers to fluid flow is thus of relevance for volcanic eruption and gas emission modelling. We report here on nine discontinuity-bearing andesite blocks collected from VolcĂĄn de Colima, Mexico. We present a systematic porosity and permeability study of fifty cores obtained from the blocks collected, and interpret the genetic processes of the discontinuities through detailed microstructural examination. Bands in pumiceous blocks were inferred to be relicts of inhomogeneous bubble expansion which, despite significantly increasing porosity, do not markedly affect permeability. Other discontinuities in our blocks are interpreted to be shear strain-induced flow banding, cavitation porosity, and/or variably healed fractures. In each of these cases, an increase in permeability (up to around three orders of magnitude) was measured relative to the host material. A final sample contained a band of lower porosity than the host rock, characterised by variably infilled pores. In this case, the band was an order of magnitude less permeable than the host rock, highlighting the complex interplay between dilatant and densifying processes in magma. We therefore present evidence for significant permeability anisotropy within the conduit and/or dome of a volcanic system. We suggest that the abundance and distribution of strain localisation features will influence the escape or entrapment of volatiles and therefore the evolution of pore pressure within active volcanic systems. Using a simple upscaling model, we illustrate the relative importance of permeable structures over different lengthscales. Strain localisation processes resulting in permeability anisotropy are likely to play an important role in the style, magnitude, and recurrence interval of volcanic eruptions

    Optical Structure and Proper-Motion Age of the Oxygen-rich Supernova Remnant 1E 0102-7219 in the Small Magellanic Cloud

    Full text link
    We present new optical emission-line images of the young SNR 1E 0102-7219 (E0102) in the SMC obtained with the HST Advanced Camera for Surveys (ACS). E0102 is a member of the oxygen-rich class of SNRs showing strong oxygen, neon , and other metal-line emissions in its optical and X-ray spectra, and an absence of H and He. The progenitor of E0102 may have been a Wolf-Rayet star that underwent considerable mass loss prior to exploding as a Type Ib/c or IIL/b SN. The ejecta in this SNR are fast-moving (V > 1000 km/s) and emit as they are compressed and heated in the reverse shock. In 2003, we obtained optical [O III], H-alpha, and continuum images with the ACS Wide Field Camera. The [O III] image captures the full velocity range of the ejecta, and shows considerable high-velocity emission projected in the middle of the SNR that was Doppler-shifted out of the narrow F502N bandpass of a previous Wide Field and Planetary Camera 2 image from 1995. Using these two epochs separated by ~8.5 years, we measure the transverse expansion of the ejecta around the outer rim in this SNR for the first time at visible wavelengths. From proper-motion measurements of 12 ejecta filaments, we estimate a mean expansion velocity for the bright ejecta of ~2000 km/s and an inferred kinematic age for the SNR of \~2050 +/- 600 years. The age we derive from HST data is about twice that inferred by Hughes et al.(2000) from X-ray data, though our 1-sigma error bars overlap. Our proper-motion age is consistent with an independent optical kinematic age derived by Eriksen et al.(2003) using spatially resolved [O III] radial-velocity data. We derive an expansion center that lies very close to X-ray and radio hotspots, which could indicate the presence of a compact remnant (neutron star or black hole).Comment: 28 pages, 8 figures. Accepted to the Astrophysical Journal, to appear in 20 April 2006 issue. Full resolution figures are posted at: http://stevenf.asu.edu/figure

    Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    Get PDF
    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space
    • 

    corecore