56 research outputs found

    Intramuscular Artesunate for Severe Malaria in African Children: A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Current artesunate (ARS) regimens for severe malaria are complex. Once daily intramuscular (i.m.) injection for 3 d would be simpler and more appropriate for remote health facilities than the current WHO-recommended regimen of five intravenous (i.v.) or i.m. injections over 4 d. We compared both a three-dose i.m. and a three-dose i.v. parenteral ARS regimen with the standard five-dose regimen using a non-inferiority design (with non-inferiority margins of 10%). METHODS AND FINDINGS: This randomized controlled trial included children (0.5-10 y) with severe malaria at seven sites in five African countries to assess whether the efficacy of simplified three-dose regimens is non-inferior to a five-dose regimen. We randomly allocated 1,047 children to receive a total dose of 12 mg/kg ARS as either a control regimen of five i.m. injections of 2.4 mg/kg (at 0, 12, 24, 48, and 72 h) (n = 348) or three injections of 4 mg/kg (at 0, 24, and 48 h) either i.m. (n = 348) or i.v. (n = 351), both of which were the intervention arms. The primary endpoint was the proportion of children with ≥ 99% reduction in parasitemia at 24 h from admission values, measured by microscopists who were blinded to the group allocations. Primary analysis was performed on the per-protocol population, which was 96% of the intention-to-treat population. Secondary analyses included an analysis of host and parasite genotypes as risks for prolongation of parasite clearance kinetics, measured every 6 h, and a Kaplan-Meier analysis to compare parasite clearance kinetics between treatment groups. A post hoc analysis was performed for delayed anemia, defined as hemoglobin ≤ 7 g/dl 7 d or more after admission. The per-protocol population was 1,002 children (five-dose i.m.: n = 331; three-dose i.m.: n = 338; three-dose i.v.: n = 333); 139 participants were lost to follow-up. In the three-dose i.m. arm, 265/338 (78%) children had a ≥ 99% reduction in parasitemia at 24 h compared to 263/331 (79%) receiving the five-dose i.m. regimen, showing non-inferiority of the simplified three-dose regimen to the conventional five-dose regimen (95% CI -7, 5; p = 0.02). In the three-dose i.v. arm, 246/333 (74%) children had ≥ 99% reduction in parasitemia at 24 h; hence, non-inferiority of this regimen to the five-dose control regimen was not shown (95% CI -12, 1; p = 0.24). Delayed parasite clearance was associated with the N86YPfmdr1 genotype. In a post hoc analysis, 192/885 (22%) children developed delayed anemia, an adverse event associated with increased leukocyte counts. There was no observed difference in delayed anemia between treatment arms. A potential limitation of the study is its open-label design, although the primary outcome measures were assessed in a blinded manner. CONCLUSIONS: A simplified three-dose i.m. regimen for severe malaria in African children is non-inferior to the more complex WHO-recommended regimen. Parenteral ARS is associated with a risk of delayed anemia in African children. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201102000277177

    Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries

    Full text link

    Estimated impact of maternal vaccination on global paediatric influenza-related in-hospital mortality: A retrospective case series

    Full text link
    BACKGROUND: Influenza virus infection is an important cause of under-five mortality. Maternal vaccination protects children younger than 3 months of age from influenza infection. However, it is unknown to what extent paediatric influenza-related mortality may be prevented by a maternal vaccine since global age-stratified mortality data are lacking. METHODS: We invited clinicians and researchers to share clinical and demographic characteristics from children younger than 5 years who died with laboratory-confirmed influenza infection between January 1, 1995 and March 31, 2020. We evaluated the potential impact of maternal vaccination by estimating the number of children younger than 3 months with in-hospital influenza-related death using published global mortality estimates. FINDINGS: We included 314 children from 31 countries. Comorbidities were present in 166 (53%) children and 41 (13%) children were born prematurely. Median age at death was 8·6 (IQR 4·5-16·6), 11·5 (IQR 4·3-24·0), and 15·5 (IQR 7·4-27·0) months for children from low- and lower-middle-income countries (LMICs), upper-middle-income countries (UMICs), and high-income countries (HICs), respectively. The proportion of children younger than 3 months at time of death was 17% in LMICs, 12% in UMICs, and 7% in HICs. We estimated that 3339 annual influenza-related in-hospital deaths occur in the first 3 months of life globally. INTERPRETATION: In our study, less than 20% of children is younger than 3 months at time of influenza-related death. Although maternal influenza vaccination may impact maternal and infant influenza disease burden, additional immunisation strategies are needed to prevent global influenza-related childhood mortality. The missing data, global coverage, and data quality in this study should be taken into consideration for further interpretation of the results. FUNDING: Bill & Melinda Gates Foundation

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    A prospective observational description of frequency and timing of antenatal care attendance and coverage of selected interventions from sites in Argentina, Guatemala, India, Kenya, Pakistan and Zambia

    Full text link
    BACKGROUND: The Global Network for Women’s and Children’s Health Research is one of the largest international networks for testing and generating evidence-based recommendations for improvement of maternal-child health in resource-limited settings. Since 2009, Global Network sites in six low and middle-income countries have collected information on antenatal care practices, which are important as indicators of care and have implications for programs to improve maternal and child health. We sought to: (1) describe the quantity of antenatal care attendance over a four-year period; and (2) explore the quality of coverage for selected preventative, screening, and birth preparedness components. METHODS: The Maternal Newborn Health Registry (MNHR) is a prospective, population-based birth and pregnancy outcomes registry in Global Network sites, including: Argentina, Guatemala, India (Belgaum and Nagpur), Kenya, Pakistan, and Zambia. MNHR data from these sites were prospectively collected from January 1, 2010 – December 31, 2013 and analyzed for indicators related to quantity and patterns of ANC and coverage of key elements of recommended focused antenatal care. Descriptive statistics were generated overall by global region (Africa, Asia, and Latin America), and for each individual site. RESULTS: Overall, 96% of women reported at least one antenatal care visit. Indian sites demonstrated the highest percentage of women who initiated antenatal care during the first trimester. Women from the Latin American and Indian sites reported the highest number of at least 4 visits. Overall, 88% of women received tetanus toxoid. Only about half of all women reported having been screened for syphilis (49%) or anemia (50%). Rates of HIV testing were above 95% in the Argentina, African, and Indian sites. The Pakistan site demonstrated relatively high rates for birth preparation, but for most other preventative and screening interventions, posted lower coverage rates as compared to other Global Network sites. CONCLUSIONS: Results from our large, prospective, population-based observational study contribute important insight into regional and site-specific patterns for antenatal care access and coverage. Our findings indicate a quality and coverage gap in antenatal care services, particularly in regards to syphilis and hemoglobin screening. We have identified site-specific gaps in access to, and delivery of, antenatal care services that can be targeted for improvement in future research and implementation efforts. TRIAL REGISTRATION: Registration at Clinicaltrials.gov (ID# NCT01073475

    Global respiratory syncytial virus–related infant community deaths

    Get PDF
    Background Respiratory syncytial virus (RSV) is a leading cause of pediatric death, with >99% of mortality occurring in low- and lower middle-income countries. At least half of RSV-related deaths are estimated to occur in the community, but clinical characteristics of this group of children remain poorly characterized. Methods The RSV Global Online Mortality Database (RSV GOLD), a global registry of under-5 children who have died with RSV-related illness, describes clinical characteristics of children dying of RSV through global data sharing. RSV GOLD acts as a collaborative platform for global deaths, including community mortality studies described in this supplement. We aimed to compare the age distribution of infant deaths <6 months occurring in the community with in-hospital. Results We studied 829 RSV-related deaths <1 year of age from 38 developing countries, including 166 community deaths from 12 countries. There were 629 deaths that occurred <6 months, of which 156 (25%) occurred in the community. Among infants who died before 6 months of age, median age at death in the community (1.5 months; IQR: 0.8−3.3) was lower than in-hospital (2.4 months; IQR: 1.5−4.0; P < .0001). The proportion of neonatal deaths was higher in the community (29%, 46/156) than in-hospital (12%, 57/473, P < 0.0001). Conclusions We observed that children in the community die at a younger age. We expect that maternal vaccination or immunoprophylaxis against RSV will have a larger impact on RSV-related mortality in the community than in-hospital. This case series of RSV-related community deaths, made possible through global data sharing, allowed us to assess the potential impact of future RSV vaccines
    corecore