72 research outputs found

    Ultrafine Mineral Associations in Superhigh-Organic-Sulfur Kentucky Coals

    Get PDF
    Two high-organic-sulfur Kentucky coals, the eastern Kentucky River Gem coal and the western Kentucky Davis coal, are examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both including elemental analysis by energy-dispersive spectroscopy (EDS). From the SEM–EDS analysis, it is observed that the western Kentucky coal had areas with Pb and Cd in addition to the expected Fe and S and the eastern Kentucky coal had individual Fe–S-rich areas with La and Ni and with Si, Al, Cr, Ni, and Ti. TEM and selected area electron diffraction (SAED) analyses demonstrate that anglesite with a rim of Pb-bearing amorphous Fe-oxide occurs in the western Kentucky coal. Melanterite, an Fe-sulfate, with minor Al, Si, and K EDS peaks, suggests that clay minerals may be in close association with the sulfate, is also detected in the coal. A polycrystalline metal in the eastern Kentucky sample with a composition similar to stainless steel is adjacent to an Al-rich shard. Euhedral pyrite grains surrounded by kaolinite and gibbsite are detected. Overall, it is noted that element associations should not be assumed to be organic just because minerals cannot be seen with optical microscopy or with standard bulk analytical techniques, such as X-ray diffraction (XRD)

    A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities

    Get PDF
    Lead (Pb) is one of the most paradoxical elements, both having diverse practical uses, as well as being extremely toxic to humans, and especially to children. The use of Pb records a steady growth with annual production currently exceeding 10 million metric tons. In spite of the environmental awareness of modern society, humans are still exposed to Pb through its emission by smelting and mining activities, and also by Pb-bearing mine wastes and soils. Here, we review the chemical and mineralogical forms of Pb generated from smelting and mining processes and subsequently altered in tailings, slag piles, and soils. In smelter plumes, Pb is emitted to the atmosphere either in the form of smaller nano-size particulate matter (PM) often associated with S, or larger micrometer Pb-bearing PM matter accompanied by oxide-silicate matrices. Pb-bearing phases in mine tailings and impacted soils depict a greater mineralogical and chemical complexity than those emitted from smelters and the larger particle size of this PM also leads to a lower Pb bioavailability. High resolution observations in aquatic system, soils and rock coatings impacted by smelting and mining activities show the presence of Pb-bearing phosphates, sulfides, sulfates, carbonates, and oxide nanoparticles. Larger micrometer size particles of Pb-bearing minerals form often through the aggregation of Pb-bearing nanoparticles, a process commonly referred to as crystallization through particle attachment. Mobilization of Pb within soil columns is strongly affected by the transport of colloids, especially those composed of organic matter and Fe-hydroxides because Pb is taken up efficiently by these two soil components. The extraordinary variability and complexities of all of these processes suggest that future reduction of Pb contamination in the environment and its impact on human health mainly depends on eliminating or greatly reducing Pb-release from smelting operations and tailings impoundments

    Shining Light on Black Rock Coatings in Smelter-Impacted Areas

    Get PDF
    Earth scientists have long known of the existence of black coatings on exposed rocks in smelter-impacted areas such as Sudbury, Ontario or Rouyn-Noranda, Québec. Black rock coatings in the Greater Sudbury area are remarkable geological records of atmospheric conditions, including mixing, scavenging, and oxidation processes, deposition rates, and the nature and source of anthropogenic releases to the atmosphere. The coatings are composed of an amorphous silica matrix that has trapped atmosphere-borne nanoparticles and has preserved their chemical and isotopic signature. These coatings are the product of high emissions of SO2 and subsequent non-stoichiometric dissolution of exposed siliceous rocks. The coatings contain spherical smelter-derived Cu–Ni-oxide particulate matter (micrometre and nanometre-sized) and metal-sulphate rich layers composed of nanometer aggregates of Fe–Cu sulphates. Lead, As, and Se-bearing nanoparticles emitted from smelters are incorporated in metal-sulphate-rich layers along the atmosphere-coating interface, presumably during coating formation. On a regional scale, ratios between different metal(loid)s in the coatings indicate that small diameter primary Pb, As and Se-bearing sulphate aerosols have been deposited at higher rates compared to larger, Ni-bearing particulate matter. High sulphur isotope values in coatings closer to smelting centres and their decrease with distance from the smelters is attributed to an increase in mixing of primary and secondary sulphates. SOMMAIRELes géoscientifiques connaissent depuis longtemps l’existence d’une couche noire sur les roches exposées aux abords des fonderies comme celles de Sudbury en Ontario ou Rouyn-Noranda au Québec.   Les couches noires des roches de la grande région de Sudbury constituent de remarquables enregistrements géologiques des phénomènes atmosphériques, notamment des processus de mélange, de piégeage, et d'oxydation, ainsi que des taux de sédimentation et de la nature et de l’origine des rejets anthropiques dans l'atmosphère.   Ces couches noires sont constituées d'une matrice de silice amorphe qui a piégé des nanoparticules atmosphériques et conservé leur signature chimique et isotopique.  Ces couches noires sont le produit de fortes émissions atmosphériques de SO2 et d’une dissolution non-stœchiométrique subséquente des roches siliceuses exposées.  Ces couches noires contiennent des sphérules de particules atmosphériques d’oxydes de Cu-Ni (de taille micrométrique et nanométrique) issues de la fonderie, et des couches riches en sulfate de métaux constituées d’agrégats nanométriques de sulfates de Fe-Cu.   Les nanoparticules de plomb, d’As et de Se émises par les fonderies sont incorporées dans les couches riches en sulfate de métal à l'interface de l’atmosphère et de cette couche, probablement lors de la formation de cette couche.  À l’échelle régionale, les rapports de concentration des différents métaux ou métalloïdes dans les couches noires indiquent que les aérosols de faible diamètre de sulfate de Pb, d’As et de Se primaires ont été déposés à des taux plus élevés que les particules nickélifères de plus grande dimension.  Les valeurs plus élevées des isotopes du soufre observées dans les couches à proximité des fonderies et leur diminution en fonction de l’éloignement des fonderies sont attribuées à une augmentation du mélange entre sulfates à l’émission et post-émission

    Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces

    Get PDF
    The results of experiments designed to test the hypothesis that near-surface molecular structure of iron oxide minerals influences adhesion of dissimilatory iron reducing bacteria are presented. These experiments involved the measurement, using atomic force microscopy, of interaction forces generated between Shewanella oneidensis MR-1 cells and single crystal growth faces of iron oxide minerals. Significantly different adhesive force was measured between cells and the (001) face of hematite, and the (100) and (111) faces of magnetite. A role for electrostatic interactions is apparent. The trend in relative forces of adhesion generated at the mineral surfaces is in agreement with predicted ferric site densities published previously. These results suggest that near-surface structure does indeed influence initial cell attachment to iron oxide surfaces; whether this is mediated via specific cell surface-mineral surface interactions or by more general interfacial phenomena remains untested

    Past, present and future global influence and technological applications of iron-bearing metastable nanominerals

    Get PDF
    Iron-bearing nanominerals such as ferrihydrite, schwertmannite, and green rust behave as metastable precursors leading to the formation of more thermodynamically stable iron mineral phases (e.g., jarosite, goethite, hematite, and magnetite). However, this transformation may last from days to tens or even hundreds of years, making them the most predominant iron-bearing minerals at environmental conditions and at the human time scale. The present review characterizes ferrihydrite, schwertmannite, and green rust nanominerals according to their main physical and chemical properties, and at both nano- and meso-scales. It also presents a comprehensive review of the multiple past and present Earth environments where these nanominerals have played, and still play, a pivotal role in the geochemistry, mineralogy and environmental nanogeosciences of these environments. Finally, the present and future technological applications of these nanominerals as well as their role in the generation of a more sustainable human-Earth relationship is discussed, with a special emphasis on their use in new circular economies and green based technologies

    Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

    Get PDF
    A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles

    Nano and Bulk-Scale Characterization of Biogeochemical Processes: A Case Study

    No full text
    Recent advances in nanotechnology and analytic instrumentation allow biogeochemical processes between microbes, metals and minerals to be probed at remarkable levels of complexity, sensitivity, space and time. One of the dominant trends in geomicrobiology is the detailed characterization and application of biogenic minerals whose characteristic features are at the nanometer scale in at least one dimension. It is therefore important to understand – and ultimately exploit – the unique properties and behavior of a wide range of nanoscale biogenic materials. Central to this trend are the development and application of effective analytic techniques for characterizing the structural and chemical properties of biogenic minerals with (sub)nanometer spatial resolution. Microbes in the subsurface are involved, directly or indirectly, in a plethora of activities such as metal reduction and oxidation, mineral precipitation and dissolution. These innate capacities of subsurface microbes are often exploited for in situ remediation of contaminated sites. During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may produce biogenic minerals such as mackinawite (FeS) which could potentially drive abiotic uranium reduction. In this work, the propensity of well-characterized biogenic mackinawite to abiotically reduce U(VI) was tested using a suite of electron microscopy and synchrotron based spectroscopy techniques. High-resolution electron microscopy confirmed the formation of nanoparticulate uraninite [UO2] on the surface of biogenic mackinawite, which was further confirmed with bulk X-ray absorption spectroscopy that revealed the molecular coordination environment of uraninite. X-ray photoelectron spectroscopy confirms that U(IV) reduction was coupled to the oxidation of S2- and not structural Fe(II) within the biogenic mackinawite. The combination of rigorous nano- and bulk-scale characterization provides insights into such biogeochemical processes, that occur during subsurface biostimulation, that are not always possible with bulk-scale analyses alone

    The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles

    No full text
    Abstract Mineralogical studies of contaminated soils affected by smelter emission and dust from mining activities indicate that minerals of the spinel group are one of the common hosts of metal-bearing contaminants. Spinel group minerals typically originate from high temperature processes, but an increasing number of studies indicate that metal-bearing spinel group minerals can also form under ambient Earth surface conditions in surficial soils. In this contribution to honor Donald Sparks, we show that the spinels Zn-bearing magnetite (Zn0.5Fe2.5O4) and minium (Pb3O4) form during low temperature alteration of Pb-bearing silica glass in surficial organic rich soils in proximity to a former Cu-smelter in Timmins, Ontario, Canada. The glass most likely formed during high-temperature processes and has been either emitted by the smelter or wind-blown from waste rock piles to near-by soils. The alteration of the glass by percolating pore solutions has resulted in the formation of large micrometer-size dendritic etch features and in nanometer-size dendritic alteration halos composed of nano-size prismatic crystals of Zn-rich magnetite and spherical nanoparticles of minium. Both spinel-type phases are embedded in an amorphous silica matrix which formed during the alteration of the glass at low temperature. A review on the occurrence of spinel-group minerals in smelter-affected soils or mine tailings indicates that the formation of these minerals under ambient Earth surface conditions is quite common and often results in the sequestration of contaminants such as Cu, Ni, Zn and Sb. The pedogenic spinels often occur as euhedral crystals in nano-size mineral assemblages within alteration features such as dendritic etch patterns, mineral surface coatings and mineralized organic matter. Their well-developed crystal forms indicate that (a) they have not formed during a rapid cooling process in a smelter or refinery which typically creates spherical particulate matter, and (b) they have not been part of particulate matter added via fluvial or Aeolian processes which most commonly yield anhedral morphologies. The formation of nano-size spinel-group minerals in low temperature environmental settings may lead to the long-term storage of metal(loid)s in mineral phases and their transport over vast distances via fluvial, alluvial and Aeolian processes
    • …
    corecore