59 research outputs found

    BUILD YOUR CITY! – ENGAGING CITIZENS IN CROWDFUNDING PROJECTS

    Get PDF
    Crowdfunding has become an increasingly popular financing instrument. Research in the field of crowdfunding mainly focusses on broadening access to finance for businesses, in particular young and innovative companies and SMEs. Our study looks beyond the potential of crowdfunding for businesses and focuses on crowdfunding as a digital government strategy. Applying insights from the literature on relationship marketing, donation behavior and crowdfunding, we develop a structural model which contains trust towards a city, commitment towards a city and the intention to fund a crowdfunding project initiated by a city as its core elements. Based on an online survey, we find that trust towards a city has a positive impact on commitment towards a city and that commitment towards a city has a positive impact on the intention to contribute to a city’s crowdfunding campaign. Certain benefits individuals perceive during a crowdfunding campaign (demonstrable, familial and societal benefits) have a positive impact on the commitment towards a city. Finally, communication has a positive impact on trust towards a city. Our study contributes to the literature on digital government, crowdfunding and relationship marketing and has practical implications. From our results, we derive specific recommendations for cities

    Uniform existence of the integrated density of states for random Schr\"odinger operators on metric graphs over Zd\mathbb{Z}^d

    Get PDF
    We consider ergodic random magnetic Schr\"odinger operators on the metric graph Zd\mathbb{Z}^d with random potentials and random boundary conditions taking values in a finite set. We show that normalized finite volume eigenvalue counting functions converge to a limit uniformly in the energy variable. This limit, the integrated density of states, can be expressed by a closed Shubin-Pastur type trace formula. It supports the spectrum and its points of discontinuity are characterized by existence of compactly supported eigenfunctions. Among other examples we discuss percolation models.Comment: 17 pages; typos removed, references updated, definition of subgraph densities explaine

    Coloration in supraparticles assembled from polyhedral metal-organic framework particles

    Get PDF
    Supraparticles are spherical colloidal crystals prepared by confined self-assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal-organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle-dependent coloration of the MOF supraparticles to the presence of ordered, onion-like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well-visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects

    Early-stage bifurcation of crystallization in a sphere

    Get PDF
    AbstractBifurcations in kinetic pathways decide the evolution of a system. An example is crystallization, in which the thermodynamically stable polymorph may not form due to kinetic hindrance. Here, we use confined self-assembly to investigate the interplay of thermodynamics and kinetics in the crystallization pathways of finite clusters. We report the observation of decahedral clusters from colloidal particles in emulsion droplets and show that these decahedral clusters can be thermodynamically stable, just like icosahedral clusters. Our hard sphere simulations reveal how the development of the early nucleus shape passes through a bifurcation that decides the cluster symmetry. A geometric argument explains why decahedral clusters are kinetically hindered and why icosahedral clusters can be dominant even if they are not in the thermodynamic ground state.</jats:p

    Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    Get PDF
    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests

    Zusammenarbeit Österreich-Slowenien auf dem gebiet der waldbodenkunde

    Get PDF
    corecore