294 research outputs found

    The Proficiency Illusion

    Get PDF
    Examines the tests states use to measure academic progress under the No Child Left Behind Act. Explores whether expectations for proficiency in reading and mathematics are consistent between states

    Do High Flyers Maintain Their Altitude? Performance Trends of Top Students

    Get PDF
    "Do High Flyers Maintain Their Altitude? Performance Trends of Top Students," is the first study to examine the performance of America's highest-achieving children over time at the individual-student level. Produced in partnership with the Northwest Evaluation Association, it finds that many high-achieving students struggle to maintain their elite performance over the years and often fail to improve their reading ability at the same rate as their average and below-average classmates. The study raises troubling questions: Is our obsession with closing achievement gaps and "leaving no child behind" coming at the expense of our "talented tenth" -- and America's future international competitiveness

    Down-Selection and Outdoor Evaluation of Novel, Halotolerant Algal Strains for Winter Cultivation

    Get PDF
    Algae offer promising feedstocks for the production of renewable fuel and chemical intermediates. However, poor outdoor winter cultivation capacity currently limits deployment potential. In this study, 300 distinct algal strains were screened in saline medium to determine their cultivation suitability during winter conditions in Mesa, Arizona. Three strains, from the genera Micractinium, Chlorella, and Scenedesmus, were chosen following laboratory evaluations and grown outdoors in 1000 L raceway ponds during the winter. Strains were down-selected based on doubling time, lipid and carbohydrate amount, final biomass accumulation capacity, cell size and phylogenetic diversity. Algal biomass productivity and compositional analysis for lipids and carbohydrates show successful outdoor deployment and cultivation under winter conditions for these strains. Outdoor harvest-yield biomass productivities ranged from 2.9 to 4.0 g/m2/day over an 18 days winter cultivation trial, with maximum productivities ranging from 4.0 to 6.5 g/m2/day, the highest productivities reported to date for algal winter strains grown in saline media in open raceway ponds. Peak fatty acid levels ranged from 9 to 26% percent of biomass, and peak carbohydrate levels ranged from 13 to 34% depending on the strain. Changes in the lipid and carbohydrate profile throughout outdoor growth are reported. This study demonstrates that algal strain screening under simulated outdoor environmental conditions in the laboratory enables identification of strains with robust biomass productivity and biofuel precursor composition. The strains isolated here represent promising winter deployment candidates for seasonal algal biomass production when using crop rotation strategies

    Analysis of noise in differential and ratiometric biosensing systems

    Get PDF
    This paper presents formulations to evaluate noise in differential and ratiometric measurements that are often performed in biosensing. These measurements are performed to improve signal to noise ratio of the sensing systems for sensitive detection of dynamic biological processes. The use of these formulations is discussed in the context of the differential intensity surface plasmon resonance (SPR) system that is widely used to characterise molecular interactions on a confined axial scale. Previous studies provide qualitative descriptions of the noise performance of such systems but lack rigorous characterisation. Here we present analytical expressions for quantitative evaluation of the noise in differential and ratiometric measurements by applying the rules of arithmetic operations on random variables. Such formulations provide the means for evaluating the signal to noise ratio of such systems. We present how correlated noise can be removed by performing differential or ratiometric processing. Applying these formulations, we also show how the sensitivity of the differential intensity SPR system changes during the experiment

    Sensitive detection of voltage transients using differential intensity surface plasmon resonance system

    Get PDF
    This paper describes theoretical and experimental study of the fundamentals of using surface plasmon resonance (SPR) for label-free detection of voltage. Plasmonic voltage sensing relies on the capacitive properties of metal-electrolyte interface that are governed by electrostatic interactions between charge carriers in both phases. Externally-applied voltage leads to changes in the free electron density in the surface of the metal, shifting the SPR position. The study shows the effects of the applied voltage on the shape of the SPR curve. It also provides a comparison between the theoretical and experimental response to the applied voltage. The response is presented in a universal term that can be used to assess the voltage sensitivity of different SPR instruments. Finally, it demonstrates the capacity of the SPR system in resolving dynamic voltage signals; a detection limit of 10mV with a temporal resolution of 5ms is achievable. These findings pave the way for the use of SPR systems in the detection of electrical activity of biological cells
    corecore