4,266 research outputs found

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS

    Get PDF
    Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Flexible manufacturing for photonics device assembly

    Get PDF
    The assembly of photonics devices such as laser diodes, optical modulators, and opto-electronics multi-chip modules (OEMCM), usually requires the placement of micron size devices such as laser diodes, and sub-micron precision attachment between optical fibers and diodes or waveguide modulators (usually referred to as pigtailing). This is a very labor intensive process. Studies done by the opto-electronics (OE) industry have shown that 95 percent of the cost of a pigtailed photonic device is due to the use of manual alignment and bonding techniques, which is the current practice in industry. At Lawrence Livermore National Laboratory, we are working to reduce the cost of packaging OE devices through the use of automation. Our efforts are concentrated on several areas that are directly related to an automated process. This paper will focus on our progress in two of those areas, in particular, an automated fiber pigtailing machine and silicon micro-technology compatible with an automated process

    Impacts of dietary nitrate on endothelial function, arterial stiffness, and systemic vascular pressure in peripheral arterial disease

    Get PDF
    Peripheral arterial disease (PAD) is the manifestation of atherosclerotic plaque in the larger arteries of the legs, which results in impaired blood flow to the lower extremities. Markers of vascular health, including endothelial function and arterial stiffness, have been shown to be attenuated in PAD. Purpose: We sought to examine the effects of a nitrate supplement (body mass-normalized dosage of beetroot juice) on vascular function measurements such as endothelial function, arterial stiffness, and central and peripheral blood pressure in patients with PAD. We hypothesized that acute intake of a nitrate supplement would improve vascular function. Methods: PAD patients (stage II-III, n=2, age around 73) had vascular measurements taken pre and post-beetroot juice ingestion including heart rate (HR), blood pressure (BP), endothelial function, arterial stiffness, and central pressure analysis. Results: Following nitrate ingestion, HR increased (Δ0.5 bpm) along with decreases in peripheral BP (Δ-9/-10 mmHg) and central BP (Δ-18/-4 mmHg). Endothelial function increased (Δ3.75%), carotid-to-radial pulse wave velocity decreased (Δ0.25 m/s), and augmentation index increased (Δ30.1%) after nitrate intake. Measurements of deceleration time increased (Δ49.5ms) and augmented pressure decreased (Δ-5 mmHg) after nitrate ingestion. Conclusion: Acute intake of a nitrate supplement may potentially be a useful therapeutic treatment to improve both central and peripheral vascular function which may be explained by increased endothelial dependent and independent vasodilatory mechanisms. However, this is a pilot study with two patients; therefore, future study is warranted with a bigger sample size to examine impacts of nitrate ingestion on vascular function and to further extrapolate our findings to patients with PAD

    Frustration of Decoherence in Open Quantum Systems

    Full text link
    We study a model of frustration of decoherence in an open quantum system. Contrary to other dissipative ohmic impurity models, such as the Kondo model or the dissipative two-level system, the impurity model discussed here never presents overdamped dynamics even for strong coupling to the environment. We show that this unusual effect has its origins in the quantum mechanical nature of the coupling between the quantum impurity and the environment. We study the problem using analytic and numerical renormalization group methods and obtain expressions for the frequency and temperature dependence of the impurity susceptibility in different regimes.Comment: 14 pages, 5 figure

    Ion energy distributions in inductively coupled plasmas having a biased boundary electrode

    Full text link
    In many plasma materials processing applications requiring energetic ion bombardment such as plasma etching, control of the time-averaged ion energy distributions (IEDs) to surfaces is becoming increasingly important to discriminate between surface processes having different threshold energies. Inductively coupled plasmas (ICPs) are attractive in this regard since the plasma potential is low and so the energy of ion fluxes can be more finely tuned with externally applied biases. In these situations, pulsed plasmas provide another level of control as the IEDs from different times during the pulse power period can be combined to create the desired time-averaged IED. A recent development in controlling of IEDs in ICPs is the use of a boundary electrode (BE) in which a continuous or pulsed dc bias is applied to shift the plasma potential and modify the IEDs to surfaces without significant changes in the bulk plasma properties. Combinations of pulsing the ICP power and the BE bias provide additional flexibility to craft IEDs. In this paper we discuss results from a computational investigation of IEDs to a grounded substrate in low-pressure (a few to 50 mTorr) ICPs sustained in argon. Results are compared with experimental measurements of plasma properties and IEDs. We demonstrate the ability to customize IEDs consisting of three energy peaks corresponding to the plasma potential during the plasma active glow, plasma afterglow and the plasma potential with the applied boundary voltage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98615/1/0963-0252_21_6_065009.pd

    Self-folding with shape memory composites

    Get PDF
    Origami-inspired manufacturing can produce complex structures and machines by folding two-dimensional composites into three-dimensional structures. This fabrication technique is potentially less expensive, faster, and easier to transport than more traditional machining methods, including 3-D printing. Self-folding enhances this method by minimizing the manual labor involved in folding, allowing for complex geometries and enabling remote or automated assembly. This paper demonstrates a novel method of self-folding hinges using shape memory polymers (SMPs), paper, and resistive circuits to achieve localized and individually addressable folding at low cost. A model for the torque exerted by these composites was developed and validated against experimental data, in order to determine design rules for selecting materials and designing hinges. Torque was shown to increase with SMP thickness, resistive circuit width, and supplied electrical current. This technique was shown to be capable of complex geometries, as well as locking assemblies with sequential folds. Its functionality and low cost make it an ideal basis for a new type of printable manufacturing based on two-dimensional fabrication techniques.National Science Foundation (U.S.) (award number CCF-1138967)National Science Foundation (U.S.) (award number EFRI-1240383
    corecore