27 research outputs found

    Stress Induced Cardiomyopathy with Midventricular Ballooning: A Rare Variant

    Get PDF
    Stress cardiomyopathy (SCM) also referred to as the “broken heart syndrome” is a condition in which intense emotional or physical stress can cause fulminant and reversible cardiac muscle weakness. SCM most commonly involves the apical segment of left ventricle but newer and rare variants have recently been seen reported. We here report a case of rare midventricular variant of stress related cardiomyopathy. A 72-year-old female with past medical history, only significant for SVT, presented with an episode of severe substernal chest pain while hiking with her husband. She felt a significant heaviness in her chest and was short of breath. During her hospitalization she was found to have positive cardiac enzymes. EKG showed 1 mm downsloping ST segment changes. Ventriculogram during left heart catheterization revealed dyskinetic midventricle. Patient was diagnosed with midventricular SCM. The patient was placed on ACE inhibitor and beta-blocker and discharged in a well-compensated state. We suggest identifying these patients by standard lab testing, electrocardiography, echocardiography, and left heart coronary angiography and ventriculography. Management of this unique entity is similar to the other variants with close observation and treatment of accompanying heart failure, valvular dysfunction, and any arrhythmias that may develop

    The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles

    Get PDF
    Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program

    Supplementary File for Capturing wheat phenotypes at the genome level

    Get PDF
    Supplementary S1: Yield and related traits in bread wheat. Table S1: Examples of genomic regions, candidate and cloned genes for yield and related traits in bread wheat. Supplementary S2: Drought tolerance. Table S2: Examples of genomic regions and candidate genes for drought tolerance. Supplementary S3: Heat tolerance. Table S3. Examples of genomic regions and candidate genes for heat tolerance. Supplementary S4: salinity tolerance in bread wheat. Table S4. Examples of genomic regions and candidate genes for salinity tolerance in bread wheat. Supplementary S5: Frost tolerance. Supplementary S6: Disease resistance. Table S5. Examples of genomic regions, candidate and cloned genes mapped for disease resistance in wheat species. Supplementary S7 insect and mite resistance. Table S6. Examples of genomic regions and candidate genes mapped for insect and mite resistance. Supplementary S8: Quality traits. Table S7. Examples of genomic regions, candidate and cloned genes for quality traits.Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.Peer reviewe

    Case Report Stress Induced Cardiomyopathy with Midventricular Ballooning: A Rare Variant

    No full text
    Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stress cardiomyopathy (SCM) also referred to as the “broken heart syndrome ” is a condition in which intense emotional or physical stress can cause fulminant and reversible cardiac muscle weakness. SCM most commonly involves the apical segment of left ventricle but newer and rare variants have recently been seen reported. We here report a case of rare midventricular variant of stress related cardiomyopathy. A 72-year-old female with past medical history, only significant for SVT, presented with an episode of severe substernal chest pain while hiking with her husband. She felt a significant heaviness in her chest and was short of breath. During her hospitalization she was found to have positive cardiac enzymes. EKG showed 1 mm downsloping ST segment changes. Ventriculogramduring left heart catheterization revealed dyskineticmidventricle. Patient was diagnosedwithmidventricular SCM. The patient was placed onACE inhibitor and beta-blocker and discharged in a well-compensated state.We suggest identifying these patients by standard lab testing, electrocardiography, echocardiography, and left heart coronary angiography and ventriculography. Management of this unique entity is similar to the other variants with close observation and treatment of accompanying heart failure, valvular dysfunction, and any arrhythmias that may develop. 1
    corecore