222 research outputs found

    ANALYSIS ON THE COREEELATION BETWEEN ROLE-PLAYING VIDEO GAMES AND ENGLISH VOCABULARY RANGE

    Get PDF
    ANALYSIS ON THE COREEELATION BETWEEN ROLE-PLAYING VIDEO GAMES AND ENGLISH VOCABULARY RANGE

    Non-oxidative modification of low density lipoprotein by ruptured myocytes

    Get PDF
    AbstractIn this study, the interaction of ruptured cardiac myocytes with low density lipoprotein (LDL) has been investigated and the consequent extent of uptake by macrophages. The results show that lysate released from ruptured myocytes is capable of inducing LDL oxidation and that the resulting modified form is recognised and degraded by macrophages. Peroxyl radical scavengers inhibit the LDL oxidation but not the macrophage uptake suggesting that LDL can be modified by mechanisms that are independent of oxidative processes by intracellular constituents of cardiac myocytes

    Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat

    Get PDF
    An experiment was conducted with barramundi (Lates calcarifer) juveniles to examine the marginal efficiency of utilisation of long chain-polyunsaturated fatty acids (LC-PUFA). A series of five diets with blends of fish (anchovy) oil and poultry fat (F100:P0, F60:P40, F30:P70, F15:P85, F0:P100) were fed to 208. ±. 4.1. g fish over a 12-week period. The replacement of fish oil with poultry fat had no impact on growth performance (average final weight of 548.3. ±. 10.2. g) or feed conversion (mean. =. 1.14. ±. 0.02). Analysis of the whole body composition showed that the fatty acid profile reflected that of the fed diet. However it was also shown that there was a disproportional retention of some fatty acids relative to others (notably LOA, 18:2n-6 and LNA, 18:3n-3). By examining the body mass independent retention of different fatty acids with differential levels of intake of each, the marginal efficiencies of the use of these nutrients by this species were able to be determined. The differential retention of fatty acids in the meat was also examined allowing the determination of oil blending strategies to optimise meat n-3 LC-PUFA levels. © 2015 Elsevier B.V

    Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome

    Get PDF
    Improving the availability of representative isolates from the coral microbiome is essential for investigating symbiotic mechanisms and applying beneficial microorganisms to improve coral health. However, few studies have explored the diversity of bacteria which can be isolated from a single species. Here, we isolated a total of 395 bacterial strains affiliated with 49 families across nine classes from the coral Pocillopora damicornis. Identification results showed that most of the strains represent potential novel bacterial species or genera. We also sequenced and assembled the genomes of 118 of these isolates, and then the putative functions of these isolates were identified based on genetic signatures derived from the genomes and this information was combined with isolate-specific phenotypic data. Genomic information derived from the isolates identified putative functions including nitrification and denitrification, dimethylsulfoniopropionate transformation, and supply of fixed carbon, amino acids, and B vitamins which may support their eukaryotic partners. Furthermore, the isolates contained genes associated with chemotaxis, biofilm formation, quorum sensing, membrane transport, signal transduction, and eukaryote-like repeat-containing and cell-cell attachment proteins, all of which potentially help the bacterium establish association with the coral host. Our work expands on the existing culture collection of coral-associated bacteria and provides important information on the metabolic potential of these isolates which can be used to refine understanding of the role of bacteria in coral health and are now available to be applied to novel strategies aimed at improving coral resilience through microbiome manipulation. IMPORTANCE Microbes underpin the health of corals which are the building blocks of diverse and productive reef ecosystems. Studying the culturable fraction of coral-associated bacteria has received less attention in recent times than using culture-independent molecular methods. However, the genomic and phenotypic characterization of isolated strains allows assessment of their functional role in underpinning coral health and identification of beneficial microbes for microbiome manipulation. Here, we isolated 395 bacterial strains from tissues of Pocillopora damicornis with many representing potentially novel taxa and therefore providing a significant contribution to coral microbiology through greatly enlarging the existing cultured coral-associated bacterial bank Through analysis of the genomes obtained in this study for the coral-associated bacteria and coral host, we elucidate putative metabolic linkages and symbiotic establishment. The results of this study will help to elucidate the role of specific isolates in coral health and provide beneficial microbes for efforts aimed at improving coral health

    PIP3-dependent macropinocytosis is incompatible with chemotaxis

    Get PDF
    In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells

    Rapid Adaptive Responses to Climate Change in Corals

    Get PDF
    Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to distinguish transgenerational plasticity from other forms of plasticity, and to elucidate the underlying mechanisms and their relative importance compared with genetic adaptation

    Extending the natural adaptive capacity of coral holobionts

    Get PDF
    Anthropogenic climate change and environmental degradation destroy coral reefs, the ecosystem services they provide, and the livelihoods of close to a billion people who depend on these services. Restoration approaches to increase the resilience of corals are therefore necessary to counter environmental pressures relevant to climate change projections. In this Review, we examine the natural processes that can increase the adaptive capacity of coral holobionts, with the aim of preserving ecosystem functioning under future ocean conditions. Current approaches that centre around restoring reef cover can be integrated with emerging approaches to enhance coral stress resilience and, thereby, allow reefs to regrow under a new set of environmental conditions. Emerging approaches such as standardized acute thermal stress assays, selective sexual propagation, coral probiotics, and environmental hardening could be feasible and scalable in the real world. However, they must follow decision-making criteria that consider the different reef, environmental, and ecological conditions. The implementation of adaptive interventions tailored around nature-based solutions will require standardized frameworks, appropriate ecological risk–benefit assessments, and analytical routines for consistent and effective utilization and global coordination

    The effectiveness of schemes that refine referrals between primary and secondary care - the UK experience with glaucoma referrals: the Health Innovation & Education Cluster (HIEC) Glaucoma Pathways Project

    Get PDF
    Objectives: A comparison of glaucoma referral refinement schemes (GRRS) in the UK during a time period of considerable change in national policy and guidance. Design: Retrospective multisite review. Setting: The outcomes of clinical examinations by optometrists with a specialist interest in glaucoma (OSIs) were compared with optometrists with no specialist interest in glaucoma (non-OSIs). Data from Huntingdon and Nottingham assessed non-OSI findings, while Manchester and Gloucestershire reviewed OSI findings. Participants: 1086 patients. 434 patients were from Huntingdon, 179 from Manchester, 204 from Gloucestershire and 269 from Nottingham. Results: The first-visit discharge rate (FVDR) for all time periods for OSIs was 14.1% compared with 36.1% from non-OSIs (difference 22%, CI 16.9% to 26.7%; p<0.001). The FVDR increased after the April 2009 National Institute for Health and Clinical Excellence (NICE) glaucoma guidelines compared with pre-NICE, which was particularly evident when pre-NICE was compared with the current practice time period (OSIs 6.2–17.2%, difference 11%, CI −24.7% to 4.3%; p=0.18, non-OSIs 29.2–43.9%, difference 14.7%, CI −27.8% to −0.30%; p=0.03). Elevated intraocular pressure (IOP) was the commonest reason for referral for OSIs and non-OSIs, 28.7% and 36.1%, respectively, of total referrals. The proportion of referrals for elevated IOP increased from 10.9% pre-NICE to 28.0% post-NICE for OSIs, and from 19% to 45.1% for non-OSIs. Conclusions: In terms of ‘demand management’, OSIs can reduce FVDR of patients reviewed in secondary care; however, in terms of ‘patient safety’ this study also shows that overemphasis on IOP as a criterion for referral is having an adverse effect on both the non-OSIs and indeed the OSIs ability to detect glaucomatous optic nerve features. It is recommended that referral letters from non-OSIs be stratified for risk, directing high-risk patients straight to secondary care, and low-risk patients to OSIs

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz

    Insights into the cultured bacterial fraction of corals

    Get PDF
    Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed \u3e 400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts
    • 

    corecore